import gradio as gr from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from groq import Groq import requests from bs4 import BeautifulSoup import time # To simulate progress updates client = Groq(api_key="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") embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) def process_pdf_with_langchain(pdf_path, progress_callback): # progress_callback("Initializing PDF processing... 0%") time.sleep(0.5) loader = PyPDFLoader(pdf_path) # progress_callback("Loading PDF... 20%") documents = loader.load() time.sleep(0.5) # progress_callback("Splitting documents... 50%") text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50) split_documents = text_splitter.split_documents(documents) time.sleep(0.5) # progress_callback("Creating vector store... 80%") vectorstore = FAISS.from_documents(split_documents, embedding_model) retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) progress_callback("Processing complete! 100%") return retriever def generate_response(query, retriever=None, use_web_search=False): knowledge = "" if retriever: relevant_docs = retriever.get_relevant_documents(query) knowledge += "\n".join([doc.page_content for doc in relevant_docs]) if use_web_search: web_results = scrape_google_search(query) knowledge += f"\n\nWeb Search Results:\n{web_results}" chat_history = memory.load_memory_variables({}).get("chat_history", "") context = ( f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), " f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making." ) if knowledge: context += f"\n\nRelevant Knowledge:\n{knowledge}" if chat_history: context += f"\n\nChat History:\n{chat_history}" context += f"\n\nYou: {query}\nParvizGPT:" chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": context}], model="llama-3.3-70b-versatile", ) response = chat_completion.choices[0].message.content.strip() memory.save_context({"input": query}, {"output": response}) return response def upload_and_process(file, progress_display): try: global retriever progress_updates = [] retriever = process_pdf_with_langchain(file.name, lambda msg: progress_updates.append(msg)) return "\n".join(progress_updates), "File uploaded and processed successfully." except Exception as e: return "", f"Error processing file: {e}" def gradio_interface(user_message, chat_box, enable_web_search=False): global retriever response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search) chat_box.append(("You", user_message)) chat_box.append(("ParvizGPT", response)) return chat_box def clear_memory(): memory.clear() return [] retriever = None with gr.Blocks() as interface: gr.Markdown("## ParvizGPT") with gr.Row(): chat_box = gr.Chatbot(label="Chat History", value=[]) with gr.Row(): user_message = gr.Textbox( label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True, ) with gr.Row(): clear_memory_btn = gr.Button("Clear Memory", interactive=True) enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True) with gr.Row(): pdf_upload = gr.UploadButton(label="📄 Upload Your PDF", file_types=[".pdf"]) progress_display = gr.Textbox(label="Progress", placeholder="Progress updates will appear here", interactive=True) with gr.Row(): submit_btn = gr.Button("Submit") pdf_upload.upload(upload_and_process, inputs=[pdf_upload, progress_display], outputs=[progress_display]) submit_btn.click(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box) user_message.submit(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box) clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box) interface.launch()