import gradio as gr from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from groq import Groq import requests from bs4 import BeautifulSoup client = Groq(api_key="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") embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) def process_pdf_with_langchain(pdf_path): loader = PyPDFLoader(pdf_path) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50) split_documents = text_splitter.split_documents(documents) vectorstore = FAISS.from_documents(split_documents, embedding_model) retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) return retriever SERPAPI_KEY = "8a20e83850a3be0a0b4e3aed98bd3addbad56e82d52e639e1a692a02d021bca1" def scrape_google_search(query, num_results=3): params = { "q": query, "hl": "fa", "gl": "ir", "num": num_results, "api_key": SERPAPI_KEY, } search = GoogleSearch(params) results = search.get_dict() if "error" in results: return f"Error: {results['error']}" search_results = [] for result in results.get("organic_results", []): title = result.get("title", "No Title") link = result.get("link", "No Link") search_results.append(f"{title}: {link}") return "\n".join(search_results) if search_results else "No results found" def generate_response(query, retriever=None, use_web_search=False): knowledge = "" if retriever: relevant_docs = retriever.get_relevant_documents(query) knowledge += "\n".join([doc.page_content for doc in relevant_docs]) if use_web_search: web_results = scrape_google_search(query) knowledge += f"\n\nWeb Search Results:\n{web_results}" chat_history = memory.load_memory_variables({}).get("chat_history", "") context = ( f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), " f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making." ) if knowledge: context += f"\n\nRelevant Knowledge:\n{knowledge}" if chat_history: context += f"\n\nChat History:\n{chat_history}" context += f"\n\nYou: {query}\nParvizGPT:" chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": context}], model="llama-3.3-70b-versatile", ) response = chat_completion.choices[0].message.content.strip() memory.save_context({"input": query}, {"output": response}) return response def gradio_interface(user_message, chat_box, pdf_file=None, enable_web_search=False): global retriever if pdf_file is not None: try: retriever = process_pdf_with_langchain(pdf_file.name) except Exception as e: return chat_box + [("Error", f"Error processing PDF: {e}")] response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search) chat_box.append(("You", user_message)) chat_box.append(("ParvizGPT", response)) return chat_box def clear_memory(): memory.clear() return [] retriever = None with gr.Blocks() as interface: gr.Markdown("## ParvizGPT") # with gr.Row(): chat_box = gr.Chatbot(label="Chat History", value=[]) # with gr.Row(): user_message = gr.Textbox( label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True, ) enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False) # with gr.Row(): clear_memory_btn = gr.Button("Clear Memory", interactive=True) # enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True) pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True , scale=1) submit_btn = gr.Button("Submit") submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search], outputs=chat_box) user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search], outputs=chat_box) clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box) interface.launch()