import os import gradio as gr from langchain_groq import ChatGroq from langchain_huggingface import HuggingFaceEmbeddings from langchain_core.vectorstores import InMemoryVectorStore from langchain_core.documents import Document from langchain_text_splitters import RecursiveCharacterTextSplitter embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings") vector_store = InMemoryVectorStore(embeddings) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) model = ChatGroq(api_key="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", model_name="deepseek-r1-distill-llama-70b") def process_file(file_path): if not file_path: return None file_extension = os.path.splitext(file_path)[1].lower() try: if file_extension == ".pdf": from pypdf import PdfReader reader = PdfReader(file_path) return "\n".join(page.extract_text() for page in reader.pages) elif file_extension == ".txt": with open(file_path, "r", encoding="utf-8") as f: return f.read() else: raise ValueError(f"Unsupported file type: {file_extension}") except Exception as e: raise RuntimeError(f"Error processing file: {str(e)}") def answer_query(query, file_path): try: file_content = process_file(file_path) if file_path else None if file_content: file_docs = [Document(page_content=file_content, metadata={"source": "uploaded_file"})] file_splits = text_splitter.split_documents(file_docs) vector_store.add_documents(file_splits) retrieved_docs = vector_store.similarity_search(query, k=2) knowledge = "\n\n".join(doc.page_content for doc in retrieved_docs) response = model.invoke( f"You are ParvizGPT, an AI assistant created by Amir Mahdi Parviz, a student at Kermanshah University of Technology (KUT). " f"Your primary purpose is to assist users by answering their questions in **Persian (Farsi)**. " f"Always respond in Persian unless explicitly asked to respond in another language." f"Related Information:\n{knowledge}\n\nQuestion:{query}\nAnswer:" ) return response.content except Exception as e: return f"Error: {str(e)}" def chat_with_bot(query, file): file_path = file.name if file else None response = answer_query(query, file_path) return response with gr.Blocks() as demo: gr.Markdown("Parviz Rager") gr.Markdown("فایل خود را آپلود کنید (PDF یا TXT) و سوالات خود را بپرسید.") with gr.Row(): file_input = gr.File(label="فایل خود را آپلود کنید (PDF یا TXT)", file_types=[".pdf", ".txt"]) query_input = gr.Textbox(label="سوال خود را وارد کنید", placeholder="مثلاً: معایب سرمایه‌گذاری در صندوق فیروزه موفقیت چیست؟") submit_button = gr.Button("ارسال") output = gr.Textbox(label="پاسخ", interactive=False) submit_button.click(fn=chat_with_bot, inputs=[query_input, file_input], outputs=output) demo.launch()