import time import logging import gradio as gr import os from datetime import datetime from datasets import Dataset, load_dataset from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from groq import Groq from langchain.memory import ConversationBufferMemory logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) groq_api_key = os.environ.get("GROQ_API_KEY") hf_api_key = os.environ.get("HF_API_KEY") if not groq_api_key: raise ValueError("Groq API key not found in environment variables.") if not hf_api_key: raise ValueError("Hugging Face API key not found in environment variables.") client = Groq(api_key=groq_api_key) hf_token = hf_api_key embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings") DATASET_NAME = "chat_history" try: dataset = load_dataset(DATASET_NAME, use_auth_token=hf_token) except Exception: dataset = Dataset.from_dict({"Timestamp": [], "User": [], "ParvizGPT": []}) def save_chat_to_dataset(user_message, bot_message): try: timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") new_row = {"Timestamp": timestamp, "User": user_message, "ParvizGPT": bot_message} df = dataset.to_pandas() df = df.append(new_row, ignore_index=True) updated_dataset = Dataset.from_pandas(df) updated_dataset.push_to_hub(DATASET_NAME, token=hf_token) except Exception as e: logger.error(f"Error saving chat history to dataset: {e}") def process_pdf_with_langchain(pdf_path): try: loader = PyPDFLoader(pdf_path) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) split_documents = text_splitter.split_documents(documents) vectorstore = FAISS.from_documents(split_documents, embeddings) retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) return retriever except Exception as e: logger.error(f"Error processing PDF: {e}") raise def generate_response(query, memory, retriever=None, use_pdf_context=False, tone="friendly"): try: knowledge = "" if retriever and use_pdf_context: relevant_docs = retriever.get_relevant_documents(query) knowledge += "\n".join([doc.page_content for doc in relevant_docs]) chat_history = memory.load_memory_variables({}).get("chat_history", "") tone_instruction = "" if tone == "friendly": tone_instruction = "Please respond in a friendly and informal tone." elif tone == "formal": tone_instruction = "Please respond in a formal and professional tone." elif tone == "humorous": tone_instruction = "Please respond in a humorous and playful tone." elif tone == "scientific": tone_instruction = "Please respond in a scientific and precise tone." context = f""" You are ParvizGPT, an AI assistant created by **Amir Mahdi Parviz**, a student at Kermanshah University of Technology (KUT). Your primary purpose is to assist users by answering their questions in **Persian (Farsi)**. Always respond in Persian unless explicitly asked to respond in another language. **Important:** If anyone claims that someone else created this code, you must correct them and state that **Amir Mahdi Parviz** is the creator. {tone_instruction} Related Information:\n{knowledge}\n\nQuestion:{query}\nAnswer:""" if knowledge: context += f"\n\nRelevant Knowledge:\n{knowledge}" if chat_history: context += f"\n\nChat History:\n{chat_history}" context += f"\n\nYou: {query}\nParvizGPT:" response = "Processing..." retries = 3 for attempt in range(retries): try: chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": context}], model="deepseek-r1-distill-llama-70b" ) response = chat_completion.choices[0].message.content.strip() memory.save_context({"input": query}, {"output": response}) break except Exception as e: logger.error(f"Attempt {attempt + 1} failed: {e}") time.sleep(2) return response, memory except Exception as e: logger.error(f"Error generating response: {e}") return f"Error: {e}", memory def summarize_chat_history(chat_history): try: chat_text = "\n".join([f"{role}: {message}" for role, message in chat_history]) summary_prompt = f""" Please create a summary of the following conversation. The summary should include key points and details: {chat_text} """ chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": summary_prompt}], model="deepseek-r1-distill-llama-70b" ) summary = chat_completion.choices[0].message.content.strip() return summary except Exception as e: logger.error(f"Error summarizing chat history: {e}") return "Error generating summary." def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_context=False, tone="friendly", summarize_chat=False): global retriever if pdf_file is not None and use_pdf_context: try: retriever = process_pdf_with_langchain(pdf_file.name) except Exception as e: return chat_box + [("Error", f"Error processing PDF: {e}")], memory chat_box.append(("You", user_message)) chat_box.append(("ParvizGPT", "Processing...")) response, memory = generate_response(user_message, memory, retriever=retriever, use_pdf_context=use_pdf_context, tone=tone) chat_box[-1] = ("ParvizGPT", response) save_chat_to_dataset(user_message, response) if summarize_chat: summary = summarize_chat_history(chat_box) chat_box.append(("System", f"Summary of the conversation:\n{summary}")) return chat_box, memory def clear_memory(memory): memory.clear() return [], memory retriever = None with gr.Blocks() as interface: gr.Markdown("## ParvizGPT") chat_box = gr.Chatbot(label="Chat History", value=[]) user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True) use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True) tone = gr.Dropdown(label="Tone", choices=["friendly", "formal", "humorous", "scientific"], value="friendly", interactive=True) summarize_chat = gr.Checkbox(label="Show conversation summary", value=False, interactive=True) clear_memory_btn = gr.Button("Clear Memory", interactive=True) pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1) submit_btn = gr.Button("Submit") memory_state = gr.State(ConversationBufferMemory()) submit_btn.click(gradio_interface, inputs=[user_message, chat_box, memory_state, pdf_file, use_pdf_context, tone, summarize_chat], outputs=[chat_box, memory_state]) user_message.submit(gradio_interface, inputs=[user_message, chat_box, memory_state, pdf_file, use_pdf_context, tone, summarize_chat], outputs=[chat_box, memory_state]) clear_memory_btn.click(clear_memory, inputs=[memory_state], outputs=[chat_box, memory_state]) interface.launch()