File size: 10,289 Bytes
91f38ae db65cd7 91f38ae b805749 91f38ae 3489bcc 91f38ae 3489bcc 91f38ae 533a3db db65cd7 fbab372 040e14b db65cd7 0dde0c7 040e14b db65cd7 040e14b 91f38ae b805749 533a3db b805749 533a3db b805749 533a3db b805749 533a3db b805749 533a3db b805749 533a3db b805749 533a3db b805749 533a3db b805749 533a3db b805749 533a3db b805749 bc992a7 b805749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
# set path
import glob, os, sys;
sys.path.append('../utils')
#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from st_aggrid import AgGrid
import logging
logger = logging.getLogger(__name__)
from io import BytesIO
import xlsxwriter
import plotly.express as px
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
is_list_like)
def targets():
if 'key1' in st.session_state:
df = st.session_state['key1'].copy()
idx = df['NetzeroLabel_Score'].idxmax()
netzero_placeholder = df.loc[idx, 'text']
df = df.drop(df.filter(regex='Score').columns, axis=1)
df = df[df.TargetLabel==True].reset_index(drop=True)
df['keep'] = True
df.drop(columns = ['ActionLabel','PolicyLabel','PlansLabel'], inplace=True)
st.session_state['target_hits'] = df
st.session_state['netzero'] = netzero_placeholder
def target_display():
if 'key1' in st.session_state:
st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
.format(os.path.basename(st.session_state['filename']),
len(st.session_state['key0'])))
hits = st.session_state['target_hits']
if len(hits) !=0:
# collecting some statistics
count_target = sum(hits['TargetLabel'] == True)
count_ghg = sum(hits['GHGLabel'] == True)
count_netzero = sum(hits['NetzeroLabel'] == True)
count_nonghg = sum(hits['NonGHGLabel'] == True)
count_mitigation = sum(hits['MitigationLabel'] == True)
count_adaptation = sum(hits['AdaptationLabel'] == True)
c1, c2 = st.columns([1,1])
with c1:
st.write('**Target Related Paragraphs**: `{}`'.format(count_target))
st.write('**Netzero Related Paragraphs**: `{}`'.format(count_netzero))
st.write('**Mitigation Related Paragraphs**: `{}`'.format(count_mitigation))
with c2:
st.write('**GHG Target Related Paragraphs**: `{}`'.format(count_ghg))
st.write('**NonGHG Target Related Paragraphs**: `{}`'.format(count_nonghg))
st.write('**Adaptation Related Paragraphs**: `{}`'.format(count_adaptation))
st.write('----------------')
st.markdown("<h4 style='text-align: left; color: black;'> Sectoral Target Related Paragraphs Count </h4>", unsafe_allow_html=True)
cols = list(hits.columns)
sector_cols = list(set(cols) - {'TargetLabel','MitigationLabel','AdaptationLabel','GHGLabel','NetzeroLabel','NonGHGLabel','text','keep','page'})
hits['Sector'] = hits.apply(lambda x: [col if x[col] == True for col in sector_cols],axis=1)
hits['Sub-Target'] = hits.apply(lambda x: [col if x[col] == True for col in ['GHGLabel','NetzeroLabel','NonGHGLabel'],axis=1)
placeholder= []
for col in sector_cols:
placeholder.append({'Sector':col,'Count':sum(hits[col] == True)})
hits['Sector']
sector_df = pd.DataFrame.from_dict(placeholder)
fig = px.bar(sector_df, x='Sector', y='Count')
st.plotly_chart(fig,use_container_width= True)
st.dataframe(hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector','Sub-Target',]])
else:
st.info("🤔 No Targets Found")
def actions():
if 'key1' in st.session_state:
df = st.session_state['key1'].copy()
df = df.drop(df.filter(regex='Score').columns, axis=1)
df = df[df.ActionLabel==True].reset_index(drop=True)
df['keep'] = True
df.drop(columns = ['TargetLabel','PolicyLabel','PlansLabel','GHGLabel','NetzeroLabel','NonGHGLabel'], inplace=True)
st.session_state['action_hits'] = df
def action_display():
if 'key1' in st.session_state:
st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
.format(os.path.basename(st.session_state['filename']),
len(st.session_state['key0'])))
hits = st.session_state['action_hits']
if len(hits) !=0:
# collecting some statistics
count_action = sum(hits['ActionLabel'] == True)
count_mitigation = sum(hits['MitigationLabel'] == True)
count_adaptation = sum(hits['AdaptationLabel'] == True)
c1, c2 = st.columns([1,1])
with c1:
st.write('**Action Related Paragraphs**: `{}`'.format(count_action))
st.write('**Mitigation Related Paragraphs**: `{}`'.format(count_mitigation))
with c2:
st.write('**Adaptation Related Paragraphs**: `{}`'.format(count_adaptation))
st.write('----------------')
st.markdown("<h4 style='text-align: left; color: black;'> Sectoral Action Related Paragraphs Count </h4>", unsafe_allow_html=True)
cols = list(hits.columns)
sector_cols = list(set(cols) - {'ActionLabel','MitigationLabel','AdaptationLabel','GHGLabel','NetzeroLabel','NonGHGLabel','text','keep','page'})
placeholder= []
for col in sector_cols:
placeholder.append({'Sector':col,'Count':sum(hits[col] == True)})
sector_df = pd.DataFrame.from_dict(placeholder)
fig = px.bar(sector_df, x='Sector', y='Count')
st.plotly_chart(fig,use_container_width= True)
st.dataframe(hits)
else:
st.info("🤔 No Actions Found")
def policy():
if 'key1' in st.session_state:
df = st.session_state['key1'].copy()
df = df.drop(df.filter(regex='Score').columns, axis=1)
df = df[df.PolicyLabel==True].reset_index(drop=True)
df['keep'] = True
df.drop(columns = ['TargetLabel','ActionLabel','PlansLabel','GHGLabel','NetzeroLabel','NonGHGLabel'], inplace=True)
st.session_state['policy_hits'] = df
def policy_display():
if 'key1' in st.session_state:
st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
.format(os.path.basename(st.session_state['filename']),
len(st.session_state['key0'])))
hits = st.session_state['policy_hits']
if len(hits) !=0:
# collecting some statistics
count_action = sum(hits['PolicyLabel'] == True)
count_mitigation = sum(hits['MitigationLabel'] == True)
count_adaptation = sum(hits['AdaptationLabel'] == True)
c1, c2 = st.columns([1,1])
with c1:
st.write('**Policy Related Paragraphs**: `{}`'.format(count_action))
st.write('**Mitigation Related Paragraphs**: `{}`'.format(count_mitigation))
with c2:
st.write('**Adaptation Related Paragraphs**: `{}`'.format(count_adaptation))
st.write('----------------')
st.markdown("<h4 style='text-align: left; color: black;'> Sectoral Policy Related Paragraphs Count </h4>", unsafe_allow_html=True)
cols = list(hits.columns)
sector_cols = list(set(cols) - {'PolicyLabel','MitigationLabel','AdaptationLabel','GHGLabel','NetzeroLabel','NonGHGLabel','text','keep','page'})
placeholder= []
for col in sector_cols:
placeholder.append({'Sector':col,'Count':sum(hits[col] == True)})
sector_df = pd.DataFrame.from_dict(placeholder)
fig = px.bar(sector_df, x='Sector', y='Count')
st.plotly_chart(fig,use_container_width= True)
st.dataframe(hits)
else:
st.info("🤔 No Policy Found")
def plans():
if 'key1' in st.session_state:
df = st.session_state['key1'].copy()
df = df.drop(df.filter(regex='Score').columns, axis=1)
df = df[df.PlansLabel==True].reset_index(drop=True)
df['keep'] = True
df.drop(columns = ['TargetLabel','PolicyLabel','ActionLabel','GHGLabel','NetzeroLabel','NonGHGLabel'], inplace=True)
st.session_state['plan_hits'] = df
def plans_display():
if 'key1' in st.session_state:
st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
.format(os.path.basename(st.session_state['filename']),
len(st.session_state['key0'])))
hits = st.session_state['plan_hits']
if len(hits) !=0:
# collecting some statistics
count_action = sum(hits['PlansLabel'] == True)
count_mitigation = sum(hits['MitigationLabel'] == True)
count_adaptation = sum(hits['AdaptationLabel'] == True)
c1, c2 = st.columns([1,1])
with c1:
st.write('**Plans Related Paragraphs**: `{}`'.format(count_action))
st.write('**Mitigation Related Paragraphs**: `{}`'.format(count_mitigation))
with c2:
st.write('**Adaptation Related Paragraphs**: `{}`'.format(count_adaptation))
st.write('----------------')
st.markdown("<h4 style='text-align: left; color: black;'> Sectoral Plans Related Paragraphs Count </h4>", unsafe_allow_html=True)
cols = list(hits.columns)
sector_cols = list(set(cols) - {'PlanLabel','MitigationLabel','AdaptationLabel','GHGLabel','NetzeroLabel','NonGHGLabel','text','keep','page'})
placeholder= []
for col in sector_cols:
placeholder.append({'Sector':col,'Count':sum(hits[col] == True)})
sector_df = pd.DataFrame.from_dict(placeholder)
fig = px.bar(sector_df, x='Sector', y='Count')
st.plotly_chart(fig,use_container_width= True)
st.dataframe(hits)
else:
st.info("🤔 No Plans Found")
|