File size: 5,115 Bytes
031e5e2 f415539 6d96e89 1e46fba 7fd91ba f415539 1e46fba f415539 031e5e2 6d737a4 f415539 6d737a4 f415539 031e5e2 6d737a4 f415539 6d737a4 031e5e2 bc82aca f415539 bc82aca ad01b2c f415539 ad01b2c f415539 ad01b2c f415539 ad01b2c f415539 ad01b2c 1e46fba 7fd91ba d49cd78 1e46fba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import streamlit as st
import json
import os
# shifted from below - this must be the first streamlit call; otherwise: problems
st.set_page_config(page_title = 'Climate Policy Analysis Assistant',
initial_sidebar_state='expanded', layout="wide")
import logging
logging.getLogger().setLevel(logging.INFO)
from utils.uploadAndExample import add_upload
import appStore.doc_processing as processing
import appStore.tapp as tapp_extraction
import appStore.adapmit as adapmit
from PIL import Image
import pkg_resources
installed_packages = pkg_resources.working_set
with st.sidebar:
# upload and example doc
choice = st.sidebar.radio(label = 'Select the Document',
help = 'You can upload the document \
or else you can try a example document',
options = ('Upload Document', 'Try Example'),
horizontal = True)
with(open('docStore/sample/files.json','r')) as json_file:
files = json.load(json_file)
add_upload(choice, files)
with st.container():
st.markdown("<h2 style='text-align: center; color: black;'> Climate Policy Analysis Assistant: CPo_droid </h2>", unsafe_allow_html=True)
st.write(' ')
with st.expander("ℹ️ - About this app", expanded=False):
st.write(
"""
CPo_droid is an open-source\
digital tool which aims to assist policy analysts and \
other users in extracting and filtering relevant \
information from public documents.
""")
st.write('**Definitions**')
st.caption("""
- **Target**: Targets are an intention to achieve a specific result, \
for example, to reduce GHG emissions to a specific level \
(a GHG target) or increase energy efficiency or renewable \
energy to a specific level (a non-GHG target), typically by \
a certain date.
- **Economy-wide Target**: Certain Target are applicable \
not at specific Sector level but are applicable at economic \
wide scale.
- **Netzero**: Identifies if its Netzero Target or not.
- 'NET-ZERO target_labels' = ['T_Netzero','T_Netzero_C']
- **GHG Target**: GHG targets refer to contributions framed as targeted \
outcomes in GHG terms.
- 'GHG': ['T_Transport_Unc','T_Transport_C','T_Economy_C','T_Economy_Unc','T_Energy_C','T_Energy_Unc']
- 'NON GHG TARGET': ['T_Adaptation_Unc','T_Adaptation_C', 'T_Transport_O_Unc', 'T_Transport_O_C']
- **Conditionality**: An “unconditional contribution” is what countries \
could implement without any conditions and based on their own \
resources and capabilities. A “conditional contribution” is one \
that countries would undertake if international means of support \
are provided, or other conditions are met.
- **Action**: Actions are an intention to implement specific means of \
achieving GHG reductions, usually in forms of concrete projects.
- **Policies and Plans**: Policies are domestic planning documents \
such as policies, regulations or guidlines, and Plans are broader \
than specific policies or actions, such as a general intention \
to ‘improve efficiency’, ‘develop renewable energy’, etc. \
The terms come from the World Bank's NDC platform and WRI's publication.
""")
c1, c2, c3 = st.columns([12,1,10])
with c1:
image = Image.open('docStore/img/flow.jpg')
st.image(image)
with c3:
st.write("""
What Happens in background?
- Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
In this step the document is broken into smaller paragraphs \
(based on word/sentence count).
- Step 2: The paragraphs are fed to **TAPP(Target/Action/Policy/Plan multilabel) Classifier** which detects if
the paragraph contains any *TAPP* related information or not.
- Step 3: The paragraphs which are detected containing some TAPP \
related information are then fed to multiple classifier to enrich the
Information Extraction.
""")
list_ = ""
for package in installed_packages:
list_ = list_ + f"{package.key}=={package.version}\n"
st.download_button('Download Requirements', list_, file_name='requirements.txt')
st.write("")
# apps to be run
apps = [processing.app, tapp_extraction.app, adapmit.app]
#, sector.app, adapmit.app,
# conditional.app, subtarget.app, category.app]
multiplier_val =1/len(apps)
if st.button("Analyze Document"):
prg = st.progress(0.0)
for i,func in enumerate(apps):
func()
prg.progress((i+1)*multiplier_val)
prg.empty() |