|
from haystack.schema import Document
|
|
from typing import List, Tuple
|
|
from typing_extensions import Literal
|
|
import logging
|
|
import pandas as pd
|
|
from pandas import DataFrame, Series
|
|
from utils.config import getconfig
|
|
from utils.preprocessing import processingpipeline
|
|
import streamlit as st
|
|
from haystack.nodes import TransformersDocumentClassifier
|
|
from transformers import pipeline
|
|
|
|
|
|
@st.cache_resource
|
|
def load_sectorClassifier(config_file:str = None, classifier_name:str = None):
|
|
"""
|
|
loads the document classifier using haystack, where the name/path of model
|
|
in HF-hub as string is used to fetch the model object.Either configfile or
|
|
model should be passed.
|
|
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
|
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
|
Params
|
|
--------
|
|
config_file: config file path from which to read the model name
|
|
classifier_name: if modelname is passed, it takes a priority if not \
|
|
found then will look for configfile, else raise error.
|
|
Return: document classifier model
|
|
"""
|
|
if not classifier_name:
|
|
if not config_file:
|
|
logging.warning("Pass either model name or config file")
|
|
return
|
|
else:
|
|
config = getconfig(config_file)
|
|
classifier_name = config.get('sector','MODEL')
|
|
|
|
logging.info("Loading sector classifier")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
doc_classifier = pipeline("text-classification",
|
|
model=classifier_name,
|
|
return_all_scores=True,
|
|
function_to_apply= "sigmoid")
|
|
|
|
return doc_classifier
|
|
|
|
|
|
@st.cache_data
|
|
def sector_classification(haystack_doc:pd.DataFrame,
|
|
threshold:float = 0.5,
|
|
classifier_model:pipeline= None
|
|
)->Tuple[DataFrame,Series]:
|
|
"""
|
|
Text-Classification on the list of texts provided. Classifier provides the
|
|
most appropriate label for each text. these labels are in terms of if text
|
|
belongs to which particular Sustainable Devleopment Goal (SDG).
|
|
Params
|
|
---------
|
|
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
|
contains the list of paragraphs in different format,here the list of
|
|
Haystack Documents is used.
|
|
threshold: threshold value for the model to keep the results from classifier
|
|
classifiermodel: you can pass the classifier model directly,which takes priority
|
|
however if not then looks for model in streamlit session.
|
|
In case of streamlit avoid passing the model directly.
|
|
Returns
|
|
----------
|
|
df: Dataframe with two columns['SDG:int', 'text']
|
|
x: Series object with the unique SDG covered in the document uploaded and
|
|
the number of times it is covered/discussed/count_of_paragraphs.
|
|
"""
|
|
logging.info("Working on Sector Identification")
|
|
haystack_doc['Sector Label'] = 'NA'
|
|
df1 = haystack_doc[haystack_doc['Target Label'] == 'TARGET']
|
|
df = haystack_doc[haystack_doc['Target Label'] == 'NEGATIVE']
|
|
if not classifier_model:
|
|
classifier_model = st.session_state['sector_classifier']
|
|
|
|
predictions = classifier_model(list(df1.text))
|
|
|
|
list_ = []
|
|
for i in range(len(predictions)):
|
|
|
|
temp = predictions[i]
|
|
placeholder = {}
|
|
for j in range(len(temp)):
|
|
placeholder[temp[j]['label']] = temp[j]['score']
|
|
list_.append(placeholder)
|
|
labels_ = [{**list_[l]} for l in range(len(predictions))]
|
|
truth_df = DataFrame.from_dict(labels_)
|
|
truth_df = truth_df.round(2)
|
|
truth_df = truth_df.astype(float) >= threshold
|
|
truth_df = truth_df.astype(str)
|
|
categories = list(truth_df.columns)
|
|
truth_df['Sector Label'] = truth_df.apply(lambda x: {i if x[i]=='True' else
|
|
None for i in categories}, axis=1)
|
|
truth_df['Sector Label'] = truth_df.apply(lambda x: list(x['Sector Label']
|
|
-{None}),axis=1)
|
|
df1['Sector Label'] = list(truth_df['Sector Label'])
|
|
df = pd.concat([df,df1])
|
|
return df
|
|
|