Last commit not found
# set path | |
import glob, os, sys; | |
sys.path.append('../utils') | |
#import needed libraries | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from utils.target_classifier import load_targetClassifier, target_classification | |
import logging | |
logger = logging.getLogger(__name__) | |
from utils.config import get_classifier_params | |
from io import BytesIO | |
import xlsxwriter | |
import plotly.express as px | |
# Declare all the necessary variables | |
classifier_identifier = 'target' | |
params = get_classifier_params(classifier_identifier) | |
## Labels dictionary ### | |
_lab_dict = { | |
'NEGATIVE':'NO TARGET INFO', | |
'TARGET':'TARGET', | |
} | |
def to_excel(df): | |
len_df = len(df) | |
output = BytesIO() | |
writer = pd.ExcelWriter(output, engine='xlsxwriter') | |
df.to_excel(writer, index=False, sheet_name='Sheet1') | |
workbook = writer.book | |
worksheet = writer.sheets['Sheet1'] | |
worksheet.data_validation('E2:E{}'.format(len_df), | |
{'validate': 'list', | |
'source': ['No', 'Yes', 'Discard']}) | |
writer.save() | |
processed_data = output.getvalue() | |
return processed_data | |
def app(): | |
#### APP INFO ##### | |
# st.write( | |
# """ | |
# The **Target Extraction** app is an easy-to-use interface built \ | |
# in Streamlit for analyzing policy documents for \ | |
# Classification of the paragraphs/texts in the document *If it \ | |
# contains any Economy-Wide Targets related information* - \ | |
# developed by GIZ Data Service Center, GFA, IKI Tracs, \ | |
# SV Klima and SPA. \n | |
# """) | |
### Main app code ### | |
with st.container(): | |
if 'key0' in st.session_state: | |
df = st.session_state.key0 | |
#load Classifier | |
classifier = load_targetClassifier(classifier_name=params['model_name']) | |
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier | |
if len(df) > 100: | |
warning_msg = ": This might take sometime, please sit back and relax." | |
else: | |
warning_msg = "" | |
df = target_classification(haystack_doc=df, | |
threshold= params['threshold']) | |
st.session_state.key1 = df | |
# # excel part | |
# temp = df[df['Relevancy']>threshold] | |
# df['Validation'] = 'No' | |
# df_xlsx = to_excel(df) | |
# st.download_button(label='📥 Download Current Result', | |
# data=df_xlsx , | |
# file_name= 'file_target.xlsx') | |
def target_display(): | |
if 'key1' in st.session_state: | |
df = st.session_state.key1 | |
hits = df[df['Target Label'] == 'TARGET'] | |
range_val = min(5,len(hits)) | |
if range_val !=0: | |
count_df = df['Target Label'].value_counts() | |
count_df = count_df.rename('count') | |
count_df = count_df.rename_axis('Target Label').reset_index() | |
count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x]) | |
fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height=200) | |
c1, c2 = st.columns([1,1]) | |
with c1: | |
st.plotly_chart(fig,use_container_width= True) | |
count_netzeo = sum(hits['Netzero Label'] == 'NETZERO') | |
count_ghg = sum(hits['GHG Label'] == 'LABEL_2') | |
count_economy = sum([True if 'Economy-wide' in x else False | |
for x in hits['Sector Label']]) | |
with c2: | |
st.write('**NetZero Targets**: `{}`'.format(count_netzeo)) | |
st.write('**GHG Targets**: `{}`'.format(count_ghg)) | |
st.write('**Economy-wide Targets**: `{}`'.format(count_economy)) | |
hits = hits.sort_values(by=['Relevancy'], ascending=False) | |
st.write("") | |
st.markdown("###### Top few Target Classified paragraph/text results ######") | |
range_val = min(5,len(hits)) | |
for i in range(range_val): | |
# the page number reflects the page that contains the main paragraph | |
# according to split limit, the overlapping part can be on a separate page | |
st.write('**Result {}** `page {}` (Relevancy Score: {:.2f})'.format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])) | |
st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " "))) | |
else: | |
st.info("🤔 No Targets found") |