ver02
Browse files- app.py +16 -3
- appStore/indicator.py +166 -0
- appStore/policyaction.py +238 -0
- appStore/target.py +1 -7
- paramconfig.cfg +20 -0
- requirements.txt +1 -0
- utils/adapmit_classifier.py +6 -6
- utils/ghg_classifier.py +7 -3
- utils/indicator_classifier.py +109 -0
- utils/policyaction_classifier.py +101 -0
- utils/sector_classifier.py +6 -6
app.py
CHANGED
@@ -3,6 +3,8 @@ import appStore.netzero as netzero
|
|
3 |
import appStore.sector as sector
|
4 |
import appStore.adapmit as adapmit
|
5 |
import appStore.ghg as ghg
|
|
|
|
|
6 |
import appStore.doc_processing as processing
|
7 |
from utils.uploadAndExample import add_upload
|
8 |
import streamlit as st
|
@@ -52,7 +54,7 @@ with st.expander("ℹ️ - About this app", expanded=False):
|
|
52 |
""")
|
53 |
st.write("")
|
54 |
apps = [processing.app, target_extraction.app, netzero.app, ghg.app,
|
55 |
-
sector.app, adapmit.app]
|
56 |
multiplier_val =1/len(apps)
|
57 |
if st.button("Analyze Document"):
|
58 |
prg = st.progress(0.0)
|
@@ -60,6 +62,17 @@ if st.button("Analyze Document"):
|
|
60 |
func()
|
61 |
prg.progress((i+1)*multiplier_val)
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
target_extraction.target_display()
|
65 |
-
|
|
|
|
|
|
|
|
|
|
3 |
import appStore.sector as sector
|
4 |
import appStore.adapmit as adapmit
|
5 |
import appStore.ghg as ghg
|
6 |
+
import appStore.policyaction as policyaction
|
7 |
+
import appStore.indicator as indicator
|
8 |
import appStore.doc_processing as processing
|
9 |
from utils.uploadAndExample import add_upload
|
10 |
import streamlit as st
|
|
|
54 |
""")
|
55 |
st.write("")
|
56 |
apps = [processing.app, target_extraction.app, netzero.app, ghg.app,
|
57 |
+
sector.app, policyaction.app, indicator.app, adapmit.app]
|
58 |
multiplier_val =1/len(apps)
|
59 |
if st.button("Analyze Document"):
|
60 |
prg = st.progress(0.0)
|
|
|
62 |
func()
|
63 |
prg.progress((i+1)*multiplier_val)
|
64 |
|
65 |
+
|
66 |
+
if 'key1' in st.session_state:
|
67 |
+
with st.sidebar:
|
68 |
+
topic = st.radio(
|
69 |
+
"Which category you want to explore?",
|
70 |
+
('Target', 'Action', 'Policies/Plans'))
|
71 |
+
|
72 |
+
if topic == 'Target':
|
73 |
target_extraction.target_display()
|
74 |
+
elif topic == 'Action':
|
75 |
+
policyaction.action_display()
|
76 |
+
else:
|
77 |
+
policyaction.policy_display()
|
78 |
+
# st.write(st.session_state.key1)
|
appStore/indicator.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set path
|
2 |
+
import glob, os, sys;
|
3 |
+
sys.path.append('../utils')
|
4 |
+
|
5 |
+
#import needed libraries
|
6 |
+
import seaborn as sns
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
from utils.indicator_classifier import load_indicatorClassifier, indicator_classification
|
12 |
+
import logging
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
from utils.config import get_classifier_params
|
15 |
+
from utils.preprocessing import paraLengthCheck
|
16 |
+
from io import BytesIO
|
17 |
+
import xlsxwriter
|
18 |
+
import plotly.express as px
|
19 |
+
|
20 |
+
|
21 |
+
# Declare all the necessary variables
|
22 |
+
classifier_identifier = 'indicator'
|
23 |
+
params = get_classifier_params(classifier_identifier)
|
24 |
+
|
25 |
+
@st.cache_data
|
26 |
+
def to_excel(df,sectorlist):
|
27 |
+
len_df = len(df)
|
28 |
+
output = BytesIO()
|
29 |
+
writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
30 |
+
df.to_excel(writer, index=False, sheet_name='Sheet1')
|
31 |
+
workbook = writer.book
|
32 |
+
worksheet = writer.sheets['Sheet1']
|
33 |
+
worksheet.data_validation('S2:S{}'.format(len_df),
|
34 |
+
{'validate': 'list',
|
35 |
+
'source': ['No', 'Yes', 'Discard']})
|
36 |
+
worksheet.data_validation('X2:X{}'.format(len_df),
|
37 |
+
{'validate': 'list',
|
38 |
+
'source': sectorlist + ['Blank']})
|
39 |
+
worksheet.data_validation('T2:T{}'.format(len_df),
|
40 |
+
{'validate': 'list',
|
41 |
+
'source': sectorlist + ['Blank']})
|
42 |
+
worksheet.data_validation('U2:U{}'.format(len_df),
|
43 |
+
{'validate': 'list',
|
44 |
+
'source': sectorlist + ['Blank']})
|
45 |
+
worksheet.data_validation('V2:V{}'.format(len_df),
|
46 |
+
{'validate': 'list',
|
47 |
+
'source': sectorlist + ['Blank']})
|
48 |
+
worksheet.data_validation('W2:U{}'.format(len_df),
|
49 |
+
{'validate': 'list',
|
50 |
+
'source': sectorlist + ['Blank']})
|
51 |
+
writer.save()
|
52 |
+
processed_data = output.getvalue()
|
53 |
+
return processed_data
|
54 |
+
|
55 |
+
def app():
|
56 |
+
|
57 |
+
### Main app code ###
|
58 |
+
with st.container():
|
59 |
+
|
60 |
+
if 'key1' in st.session_state:
|
61 |
+
df = st.session_state.key1
|
62 |
+
classifier = load_indicatorClassifier(classifier_name=params['model_name'])
|
63 |
+
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
|
64 |
+
|
65 |
+
if sum(df['Target Label'] == 'TARGET') > 100:
|
66 |
+
warning_msg = ": This might take sometime, please sit back and relax."
|
67 |
+
else:
|
68 |
+
warning_msg = ""
|
69 |
+
|
70 |
+
df = indicator_classification(haystack_doc=df,
|
71 |
+
threshold= params['threshold'])
|
72 |
+
|
73 |
+
st.session_state.key1 = df
|
74 |
+
|
75 |
+
|
76 |
+
# # st.write(df)
|
77 |
+
# threshold= params['threshold']
|
78 |
+
# truth_df = df.drop(['text'],axis=1)
|
79 |
+
# truth_df = truth_df.astype(float) >= threshold
|
80 |
+
# truth_df = truth_df.astype(str)
|
81 |
+
# categories = list(truth_df.columns)
|
82 |
+
|
83 |
+
# placeholder = {}
|
84 |
+
# for val in categories:
|
85 |
+
# placeholder[val] = dict(truth_df[val].value_counts())
|
86 |
+
# count_df = pd.DataFrame.from_dict(placeholder)
|
87 |
+
# count_df = count_df.T
|
88 |
+
# count_df = count_df.reset_index()
|
89 |
+
# # st.write(count_df)
|
90 |
+
# placeholder = []
|
91 |
+
# for i in range(len(count_df)):
|
92 |
+
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'Yes'])
|
93 |
+
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'No'])
|
94 |
+
# count_df = pd.DataFrame(placeholder, columns = ['category','count','truth_value'])
|
95 |
+
# # st.write("Total Paragraphs: {}".format(len(df)))
|
96 |
+
# fig = px.bar(count_df, x='category', y='count',
|
97 |
+
# color='truth_value')
|
98 |
+
# # c1, c2 = st.columns([1,1])
|
99 |
+
# # with c1:
|
100 |
+
# st.plotly_chart(fig,use_container_width= True)
|
101 |
+
|
102 |
+
# truth_df['labels'] = truth_df.apply(lambda x: {i if x[i]=='True' else None for i in categories}, axis=1)
|
103 |
+
# truth_df['labels'] = truth_df.apply(lambda x: list(x['labels'] -{None}),axis=1)
|
104 |
+
# # st.write(truth_df)
|
105 |
+
# df = pd.concat([df,truth_df['labels']],axis=1)
|
106 |
+
# df['Validation'] = 'No'
|
107 |
+
# df['Sector1'] = 'Blank'
|
108 |
+
# df['Sector2'] = 'Blank'
|
109 |
+
# df['Sector3'] = 'Blank'
|
110 |
+
# df['Sector4'] = 'Blank'
|
111 |
+
# df['Sector5'] = 'Blank'
|
112 |
+
# df_xlsx = to_excel(df,categories)
|
113 |
+
# st.download_button(label='📥 Download Current Result',
|
114 |
+
# data=df_xlsx ,
|
115 |
+
# # file_name= 'file_sector.xlsx')
|
116 |
+
# else:
|
117 |
+
# st.info("🤔 No document found, please try to upload it at the sidebar!")
|
118 |
+
# logging.warning("Terminated as no document provided")
|
119 |
+
|
120 |
+
# # Creating truth value dataframe
|
121 |
+
# if 'key' in st.session_state:
|
122 |
+
# if st.session_state.key is not None:
|
123 |
+
# df = st.session_state.key
|
124 |
+
# st.markdown("###### Select the threshold for classifier ######")
|
125 |
+
# c4, c5 = st.columns([1,1])
|
126 |
+
|
127 |
+
# with c4:
|
128 |
+
# threshold = st.slider("Threshold", min_value=0.00, max_value=1.0,
|
129 |
+
# step=0.01, value=0.5,
|
130 |
+
# help = "Keep High Value if want refined result, low if dont want to miss anything" )
|
131 |
+
# sectors =set(df.columns)
|
132 |
+
# removecols = {'Validation','Sector1','Sector2','Sector3','Sector4',
|
133 |
+
# 'Sector5','text'}
|
134 |
+
# sectors = list(sectors - removecols)
|
135 |
+
|
136 |
+
# placeholder = {}
|
137 |
+
# for val in sectors:
|
138 |
+
# temp = df[val].astype(float) > threshold
|
139 |
+
# temp = temp.astype(str)
|
140 |
+
# placeholder[val] = dict(temp.value_counts())
|
141 |
+
|
142 |
+
# count_df = pd.DataFrame.from_dict(placeholder)
|
143 |
+
# count_df = count_df.T
|
144 |
+
# count_df = count_df.reset_index()
|
145 |
+
# placeholder = []
|
146 |
+
# for i in range(len(count_df)):
|
147 |
+
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'False'])
|
148 |
+
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'True'])
|
149 |
+
|
150 |
+
# count_df = pd.DataFrame(placeholder, columns = ['sector','count','truth_value'])
|
151 |
+
# fig = px.bar(count_df, x='sector', y='count',
|
152 |
+
# color='truth_value',
|
153 |
+
# height=400)
|
154 |
+
# st.write("")
|
155 |
+
# st.plotly_chart(fig)
|
156 |
+
|
157 |
+
# df['Validation'] = 'No'
|
158 |
+
# df['Sector1'] = 'Blank'
|
159 |
+
# df['Sector2'] = 'Blank'
|
160 |
+
# df['Sector3'] = 'Blank'
|
161 |
+
# df['Sector4'] = 'Blank'
|
162 |
+
# df['Sector5'] = 'Blank'
|
163 |
+
# df_xlsx = to_excel(df,sectors)
|
164 |
+
# st.download_button(label='📥 Download Current Result',
|
165 |
+
# data=df_xlsx ,
|
166 |
+
# file_name= 'file_sector.xlsx')
|
appStore/policyaction.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set path
|
2 |
+
import glob, os, sys;
|
3 |
+
sys.path.append('../utils')
|
4 |
+
|
5 |
+
#import needed libraries
|
6 |
+
import seaborn as sns
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
from utils.policyaction_classifier import load_policyactionClassifier, policyaction_classification
|
12 |
+
import logging
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
from utils.config import get_classifier_params
|
15 |
+
from utils.preprocessing import paraLengthCheck
|
16 |
+
from io import BytesIO
|
17 |
+
import xlsxwriter
|
18 |
+
import plotly.express as px
|
19 |
+
|
20 |
+
|
21 |
+
# Declare all the necessary variables
|
22 |
+
classifier_identifier = 'policyaction'
|
23 |
+
params = get_classifier_params(classifier_identifier)
|
24 |
+
|
25 |
+
@st.cache_data
|
26 |
+
def to_excel(df):
|
27 |
+
df['Target Validation'] = 'No'
|
28 |
+
df['Netzero Validation'] = 'No'
|
29 |
+
df['GHG Validation'] = 'No'
|
30 |
+
df['Adapt-Mitig Validation'] = 'No'
|
31 |
+
df['Sector'] = 'No'
|
32 |
+
len_df = len(df)
|
33 |
+
output = BytesIO()
|
34 |
+
writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
35 |
+
df.to_excel(writer, index=False, sheet_name='Sheet1')
|
36 |
+
workbook = writer.book
|
37 |
+
worksheet = writer.sheets['Sheet1']
|
38 |
+
worksheet.data_validation('L2:L{}'.format(len_df),
|
39 |
+
{'validate': 'list',
|
40 |
+
'source': ['No', 'Yes', 'Discard']})
|
41 |
+
worksheet.data_validation('M2:L{}'.format(len_df),
|
42 |
+
{'validate': 'list',
|
43 |
+
'source': ['No', 'Yes', 'Discard']})
|
44 |
+
worksheet.data_validation('N2:L{}'.format(len_df),
|
45 |
+
{'validate': 'list',
|
46 |
+
'source': ['No', 'Yes', 'Discard']})
|
47 |
+
worksheet.data_validation('O2:L{}'.format(len_df),
|
48 |
+
{'validate': 'list',
|
49 |
+
'source': ['No', 'Yes', 'Discard']})
|
50 |
+
worksheet.data_validation('P2:L{}'.format(len_df),
|
51 |
+
{'validate': 'list',
|
52 |
+
'source': ['No', 'Yes', 'Discard']})
|
53 |
+
writer.save()
|
54 |
+
processed_data = output.getvalue()
|
55 |
+
return processed_data
|
56 |
+
|
57 |
+
def app():
|
58 |
+
|
59 |
+
### Main app code ###
|
60 |
+
with st.container():
|
61 |
+
|
62 |
+
if 'key1' in st.session_state:
|
63 |
+
df = st.session_state.key1
|
64 |
+
classifier = load_policyactionClassifier(classifier_name=params['model_name'])
|
65 |
+
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
|
66 |
+
|
67 |
+
if sum(df['Target Label'] == 'TARGET') > 100:
|
68 |
+
warning_msg = ": This might take sometime, please sit back and relax."
|
69 |
+
else:
|
70 |
+
warning_msg = ""
|
71 |
+
|
72 |
+
df = policyaction_classification(haystack_doc=df,
|
73 |
+
threshold= params['threshold'])
|
74 |
+
|
75 |
+
st.session_state.key1 = df
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
def action_display():
|
80 |
+
if 'key1' in st.session_state:
|
81 |
+
df = st.session_state.key1
|
82 |
+
|
83 |
+
|
84 |
+
df['Action_check'] = df['Policy-Action Label'].apply(lambda x: True if 'Action' in x else False)
|
85 |
+
hits = df[df['Action_check'] == True]
|
86 |
+
# hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i])
|
87 |
+
range_val = min(5,len(hits))
|
88 |
+
if range_val !=0:
|
89 |
+
count_action = len(hits)
|
90 |
+
#count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
|
91 |
+
#count_ghg = sum(hits['GHG Label'] == 'GHG')
|
92 |
+
#count_economy = sum([True if 'Economy-wide' in x else False
|
93 |
+
# for x in hits['Sector Label']])
|
94 |
+
|
95 |
+
# count_df = df['Target Label'].value_counts()
|
96 |
+
# count_df = count_df.rename('count')
|
97 |
+
# count_df = count_df.rename_axis('Target Label').reset_index()
|
98 |
+
# count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x])
|
99 |
+
|
100 |
+
# fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height=200)
|
101 |
+
# c1, c2 = st.columns([1,1])
|
102 |
+
# with c1:
|
103 |
+
# st.write('**Target Paragraphs**: `{}`'.format(count_target))
|
104 |
+
# st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
|
105 |
+
#
|
106 |
+
# # st.plotly_chart(fig,use_container_width= True)
|
107 |
+
#
|
108 |
+
# count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
|
109 |
+
# count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
|
110 |
+
# count_economy = sum([True if 'Economy-wide' in x else False
|
111 |
+
# for x in hits['Sector Label']])
|
112 |
+
# with c2:
|
113 |
+
# st.write('**GHG Related Paragraphs**: `{}`'.format(count_ghg))
|
114 |
+
# st.write('**Economy-wide Related Paragraphs**: `{}`'.format(count_economy))
|
115 |
+
# st.write('-------------------')
|
116 |
+
# hits = hits.sort_values(by=['Relevancy'], ascending=False)
|
117 |
+
# netzerohit = hits[hits['Netzero Label'] == 'NETZERO']
|
118 |
+
# if not netzerohit.empty:
|
119 |
+
# netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
|
120 |
+
# # st.write('-------------------')
|
121 |
+
# st.markdown("###### Netzero paragraph ######")
|
122 |
+
# st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'],
|
123 |
+
# netzerohit.iloc[0]['text'].replace("\n", " ")))
|
124 |
+
# st.write("")
|
125 |
+
# else:
|
126 |
+
# st.info("🤔 No Netzero paragraph found")
|
127 |
+
|
128 |
+
# st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])")
|
129 |
+
# st.write('-------------------')
|
130 |
+
st.write("")
|
131 |
+
st.markdown("###### Top few Action Classified paragraph/text results from list of {} classified paragraphs ######".format(count_action))
|
132 |
+
st.markdown("""<hr style="height:10px;border:none;color:#097969;background-color:#097969;" /> """, unsafe_allow_html=True)
|
133 |
+
range_val = min(5,len(hits))
|
134 |
+
for i in range(range_val):
|
135 |
+
# the page number reflects the page that contains the main paragraph
|
136 |
+
# according to split limit, the overlapping part can be on a separate page
|
137 |
+
st.write('**Result {}** : `page {}`, `Sector: {}`,\
|
138 |
+
`Indicators: {}`, `Adapt-Mitig :{}`'\
|
139 |
+
.format(i+1,
|
140 |
+
hits.iloc[i]['page'], hits.iloc[i]['Sector Label'],
|
141 |
+
hits.iloc[i]['Indicator Label'],hits.iloc[i]['Adapt-Mitig Label']))
|
142 |
+
st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " ")))
|
143 |
+
hits = hits.reset_index(drop =True)
|
144 |
+
st.write('----------------')
|
145 |
+
st.write('Explore the data')
|
146 |
+
st.write(hits)
|
147 |
+
df.drop(columns = ['Action_check'],inplace=True)
|
148 |
+
df_xlsx = to_excel(df)
|
149 |
+
|
150 |
+
with st.sidebar:
|
151 |
+
st.write('-------------')
|
152 |
+
st.download_button(label='📥 Download Result',
|
153 |
+
data=df_xlsx ,
|
154 |
+
file_name= 'cpu_analysis.xlsx')
|
155 |
+
|
156 |
+
else:
|
157 |
+
st.info("🤔 No Actions found")
|
158 |
+
|
159 |
+
|
160 |
+
def policy_display():
|
161 |
+
if 'key1' in st.session_state:
|
162 |
+
df = st.session_state.key1
|
163 |
+
|
164 |
+
|
165 |
+
df['Policy_check'] = df['Policy-Action Label'].apply(lambda x: True if 'Policies & Plans' in x else False)
|
166 |
+
hits = df[df['Policy_check'] == True]
|
167 |
+
# hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i])
|
168 |
+
range_val = min(5,len(hits))
|
169 |
+
if range_val !=0:
|
170 |
+
count_policy = len(hits)
|
171 |
+
#count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
|
172 |
+
#count_ghg = sum(hits['GHG Label'] == 'GHG')
|
173 |
+
#count_economy = sum([True if 'Economy-wide' in x else False
|
174 |
+
# for x in hits['Sector Label']])
|
175 |
+
|
176 |
+
# count_df = df['Target Label'].value_counts()
|
177 |
+
# count_df = count_df.rename('count')
|
178 |
+
# count_df = count_df.rename_axis('Target Label').reset_index()
|
179 |
+
# count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x])
|
180 |
+
|
181 |
+
# fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height=200)
|
182 |
+
# c1, c2 = st.columns([1,1])
|
183 |
+
# with c1:
|
184 |
+
# st.write('**Target Paragraphs**: `{}`'.format(count_target))
|
185 |
+
# st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
|
186 |
+
#
|
187 |
+
# # st.plotly_chart(fig,use_container_width= True)
|
188 |
+
#
|
189 |
+
# count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
|
190 |
+
# count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
|
191 |
+
# count_economy = sum([True if 'Economy-wide' in x else False
|
192 |
+
# for x in hits['Sector Label']])
|
193 |
+
# with c2:
|
194 |
+
# st.write('**GHG Related Paragraphs**: `{}`'.format(count_ghg))
|
195 |
+
# st.write('**Economy-wide Related Paragraphs**: `{}`'.format(count_economy))
|
196 |
+
# st.write('-------------------')
|
197 |
+
# hits = hits.sort_values(by=['Relevancy'], ascending=False)
|
198 |
+
# netzerohit = hits[hits['Netzero Label'] == 'NETZERO']
|
199 |
+
# if not netzerohit.empty:
|
200 |
+
# netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
|
201 |
+
# # st.write('-------------------')
|
202 |
+
# st.markdown("###### Netzero paragraph ######")
|
203 |
+
# st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'],
|
204 |
+
# netzerohit.iloc[0]['text'].replace("\n", " ")))
|
205 |
+
# st.write("")
|
206 |
+
# else:
|
207 |
+
# st.info("🤔 No Netzero paragraph found")
|
208 |
+
|
209 |
+
# st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])")
|
210 |
+
# st.write('-------------------')
|
211 |
+
st.write("")
|
212 |
+
st.markdown("###### Top few Policy/Plans Classified paragraph/text results from list of {} classified paragraphs ######".format(count_policy))
|
213 |
+
st.markdown("""<hr style="height:10px;border:none;color:#097969;background-color:#097969;" /> """, unsafe_allow_html=True)
|
214 |
+
range_val = min(5,len(hits))
|
215 |
+
for i in range(range_val):
|
216 |
+
# the page number reflects the page that contains the main paragraph
|
217 |
+
# according to split limit, the overlapping part can be on a separate page
|
218 |
+
st.write('**Result {}** : `page {}`, `Sector: {}`,\
|
219 |
+
`Indicators: {}`, `Adapt-Mitig :{}`'\
|
220 |
+
.format(i+1,
|
221 |
+
hits.iloc[i]['page'], hits.iloc[i]['Sector Label'],
|
222 |
+
hits.iloc[i]['Indicator Label'],hits.iloc[i]['Adapt-Mitig Label']))
|
223 |
+
st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " ")))
|
224 |
+
hits = hits.reset_index(drop =True)
|
225 |
+
st.write('----------------')
|
226 |
+
st.write('Explore the data')
|
227 |
+
st.write(hits)
|
228 |
+
df.drop(columns = ['Policy_check'],inplace=True)
|
229 |
+
df_xlsx = to_excel(df)
|
230 |
+
|
231 |
+
with st.sidebar:
|
232 |
+
st.write('-------------')
|
233 |
+
st.download_button(label='📥 Download Result',
|
234 |
+
data=df_xlsx ,
|
235 |
+
file_name= 'cpu_analysis.xlsx')
|
236 |
+
|
237 |
+
else:
|
238 |
+
st.info("🤔 No Policy/Plans found")
|
appStore/target.py
CHANGED
@@ -102,13 +102,7 @@ def target_display():
|
|
102 |
if 'key1' in st.session_state:
|
103 |
df = st.session_state.key1
|
104 |
|
105 |
-
|
106 |
-
'LABEL_0':'NEGATIVE',
|
107 |
-
'LABEL_1':'NOT GHG',
|
108 |
-
'LABEL_2':'GHG',
|
109 |
-
'NA':'NA',
|
110 |
-
}
|
111 |
-
df['GHG Label'] = df['GHG Label'].apply(lambda i: _lab_dict[i])
|
112 |
hits = df[df['Target Label'] == 'TARGET']
|
113 |
# hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i])
|
114 |
range_val = min(5,len(hits))
|
|
|
102 |
if 'key1' in st.session_state:
|
103 |
df = st.session_state.key1
|
104 |
|
105 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
hits = df[df['Target Label'] == 'TARGET']
|
107 |
# hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i])
|
108 |
range_val = min(5,len(hits))
|
paramconfig.cfg
CHANGED
@@ -56,4 +56,24 @@ REMOVE_PUNC = 0
|
|
56 |
SPLIT_LENGTH = 60
|
57 |
SPLIT_OVERLAP = 10
|
58 |
RESPECT_SENTENCE_BOUNDARY = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
TOP_KEY = 10
|
|
|
56 |
SPLIT_LENGTH = 60
|
57 |
SPLIT_OVERLAP = 10
|
58 |
RESPECT_SENTENCE_BOUNDARY = 1
|
59 |
+
TOP_KEY = 10
|
60 |
+
|
61 |
+
[policyaction]
|
62 |
+
THRESHOLD = 0.50
|
63 |
+
MODEL = ppsingh/action-policy-plans-classifier
|
64 |
+
SPLIT_BY = word
|
65 |
+
REMOVE_PUNC = 0
|
66 |
+
SPLIT_LENGTH = 60
|
67 |
+
SPLIT_OVERLAP = 10
|
68 |
+
RESPECT_SENTENCE_BOUNDARY = 1
|
69 |
+
TOP_KEY = 10
|
70 |
+
|
71 |
+
[indicator]
|
72 |
+
THRESHOLD = 0.50
|
73 |
+
MODEL = ilaria-oneofftech/ikitracs_mitigation
|
74 |
+
SPLIT_BY = word
|
75 |
+
REMOVE_PUNC = 0
|
76 |
+
SPLIT_LENGTH = 60
|
77 |
+
SPLIT_OVERLAP = 10
|
78 |
+
RESPECT_SENTENCE_BOUNDARY = 1
|
79 |
TOP_KEY = 10
|
requirements.txt
CHANGED
@@ -15,5 +15,6 @@ markdown==3.4.1
|
|
15 |
summa==1.2.0
|
16 |
plotly
|
17 |
xlsxwriter
|
|
|
18 |
streamlit-aggrid
|
19 |
python-docx
|
|
|
15 |
summa==1.2.0
|
16 |
plotly
|
17 |
xlsxwriter
|
18 |
+
altair==4.0
|
19 |
streamlit-aggrid
|
20 |
python-docx
|
utils/adapmit_classifier.py
CHANGED
@@ -67,13 +67,13 @@ def adapmit_classification(haystack_doc:pd.DataFrame,
|
|
67 |
"""
|
68 |
logging.info("Working on Adaptation-Mitigation Identification")
|
69 |
haystack_doc['Adapt-Mitig Label'] = 'NA'
|
70 |
-
|
71 |
-
|
72 |
|
73 |
if not classifier_model:
|
74 |
classifier_model = st.session_state['adapmit_classifier']
|
75 |
|
76 |
-
predictions = classifier_model(list(
|
77 |
# converting the predictions to desired format
|
78 |
list_ = []
|
79 |
for i in range(len(predictions)):
|
@@ -93,7 +93,7 @@ def adapmit_classification(haystack_doc:pd.DataFrame,
|
|
93 |
else None for i in categories}, axis=1)
|
94 |
truth_df['Adapt-Mitig Label'] = truth_df.apply(lambda x:
|
95 |
list(x['Adapt-Mitig Label'] -{None}),axis=1)
|
96 |
-
|
97 |
-
df = pd.concat([df,df1])
|
98 |
|
99 |
-
return
|
|
|
67 |
"""
|
68 |
logging.info("Working on Adaptation-Mitigation Identification")
|
69 |
haystack_doc['Adapt-Mitig Label'] = 'NA'
|
70 |
+
# df1 = haystack_doc[haystack_doc['Target Label'] == 'TARGET']
|
71 |
+
# df = haystack_doc[haystack_doc['Target Label'] == 'NEGATIVE']
|
72 |
|
73 |
if not classifier_model:
|
74 |
classifier_model = st.session_state['adapmit_classifier']
|
75 |
|
76 |
+
predictions = classifier_model(list(haystack_doc.text))
|
77 |
# converting the predictions to desired format
|
78 |
list_ = []
|
79 |
for i in range(len(predictions)):
|
|
|
93 |
else None for i in categories}, axis=1)
|
94 |
truth_df['Adapt-Mitig Label'] = truth_df.apply(lambda x:
|
95 |
list(x['Adapt-Mitig Label'] -{None}),axis=1)
|
96 |
+
haystack_doc['Adapt-Mitig Label'] = list(truth_df['Adapt-Mitig Label'])
|
97 |
+
#df = pd.concat([df,df1])
|
98 |
|
99 |
+
return haystack_doc
|
utils/ghg_classifier.py
CHANGED
@@ -10,9 +10,12 @@ from transformers import pipeline
|
|
10 |
|
11 |
# Labels dictionary ###
|
12 |
_lab_dict = {
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
@st.cache_resource
|
18 |
def load_ghgClassifier(config_file:str = None, classifier_name:str = None):
|
@@ -82,6 +85,7 @@ def ghg_classification(haystack_doc:pd.DataFrame,
|
|
82 |
labels_= [(l[0]['label'],l[0]['score']) for l in results]
|
83 |
temp['GHG Label'],temp['GHG Score'] = zip(*labels_)
|
84 |
df = pd.concat([df,temp])
|
|
|
85 |
df = df.reset_index(drop =True)
|
86 |
df.index += 1
|
87 |
|
|
|
10 |
|
11 |
# Labels dictionary ###
|
12 |
_lab_dict = {
|
13 |
+
'LABEL_0':'NEGATIVE',
|
14 |
+
'LABEL_1':'NOT GHG',
|
15 |
+
'LABEL_2':'GHG',
|
16 |
+
'NA':'NA',
|
17 |
+
}
|
18 |
+
|
19 |
|
20 |
@st.cache_resource
|
21 |
def load_ghgClassifier(config_file:str = None, classifier_name:str = None):
|
|
|
85 |
labels_= [(l[0]['label'],l[0]['score']) for l in results]
|
86 |
temp['GHG Label'],temp['GHG Score'] = zip(*labels_)
|
87 |
df = pd.concat([df,temp])
|
88 |
+
df['GHG Label'] = df['GHG Label'].apply(lambda i: _lab_dict[i])
|
89 |
df = df.reset_index(drop =True)
|
90 |
df.index += 1
|
91 |
|
utils/indicator_classifier.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from typing_extensions import Literal
|
3 |
+
import logging
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import DataFrame, Series
|
6 |
+
from utils.config import getconfig
|
7 |
+
from utils.preprocessing import processingpipeline
|
8 |
+
import streamlit as st
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
|
12 |
+
@st.cache_resource
|
13 |
+
def load_indicatorClassifier(config_file:str = None, classifier_name:str = None):
|
14 |
+
"""
|
15 |
+
loads the document classifier using haystack, where the name/path of model
|
16 |
+
in HF-hub as string is used to fetch the model object.Either configfile or
|
17 |
+
model should be passed.
|
18 |
+
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
19 |
+
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
20 |
+
Params
|
21 |
+
--------
|
22 |
+
config_file: config file path from which to read the model name
|
23 |
+
classifier_name: if modelname is passed, it takes a priority if not \
|
24 |
+
found then will look for configfile, else raise error.
|
25 |
+
Return: document classifier model
|
26 |
+
"""
|
27 |
+
if not classifier_name:
|
28 |
+
if not config_file:
|
29 |
+
logging.warning("Pass either model name or config file")
|
30 |
+
return
|
31 |
+
else:
|
32 |
+
config = getconfig(config_file)
|
33 |
+
classifier_name = config.get('indicator','MODEL')
|
34 |
+
|
35 |
+
logging.info("Loading indicator classifier")
|
36 |
+
# we are using the pipeline as the model is multilabel and DocumentClassifier
|
37 |
+
# from Haystack doesnt support multilabel
|
38 |
+
# in pipeline we use 'sigmoid' to explicitly tell pipeline to make it multilabel
|
39 |
+
# if not then it will automatically use softmax, which is not a desired thing.
|
40 |
+
# doc_classifier = TransformersDocumentClassifier(
|
41 |
+
# model_name_or_path=classifier_name,
|
42 |
+
# task="text-classification",
|
43 |
+
# top_k = None)
|
44 |
+
|
45 |
+
doc_classifier = pipeline("text-classification",
|
46 |
+
model=classifier_name,
|
47 |
+
return_all_scores=True,
|
48 |
+
function_to_apply= "sigmoid")
|
49 |
+
|
50 |
+
return doc_classifier
|
51 |
+
|
52 |
+
|
53 |
+
@st.cache_data
|
54 |
+
def indicator_classification(haystack_doc:pd.DataFrame,
|
55 |
+
threshold:float = 0.5,
|
56 |
+
classifier_model:pipeline= None
|
57 |
+
)->Tuple[DataFrame,Series]:
|
58 |
+
"""
|
59 |
+
Text-Classification on the list of texts provided. Classifier provides the
|
60 |
+
most appropriate label for each text. these labels are in terms of if text
|
61 |
+
belongs to which particular Sustainable Devleopment Goal (SDG).
|
62 |
+
Params
|
63 |
+
---------
|
64 |
+
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
65 |
+
contains the list of paragraphs in different format,here the list of
|
66 |
+
Haystack Documents is used.
|
67 |
+
threshold: threshold value for the model to keep the results from classifier
|
68 |
+
classifiermodel: you can pass the classifier model directly,which takes priority
|
69 |
+
however if not then looks for model in streamlit session.
|
70 |
+
In case of streamlit avoid passing the model directly.
|
71 |
+
Returns
|
72 |
+
----------
|
73 |
+
df: Dataframe with two columns['SDG:int', 'text']
|
74 |
+
x: Series object with the unique SDG covered in the document uploaded and
|
75 |
+
the number of times it is covered/discussed/count_of_paragraphs.
|
76 |
+
"""
|
77 |
+
logging.info("Working on Indicator Identification")
|
78 |
+
haystack_doc['Indicator Label'] = 'NA'
|
79 |
+
haystack_doc['PA_check'] = haystack_doc['Policy-Action Label'].apply(lambda x: True if len(x) != 0 else False)
|
80 |
+
|
81 |
+
df1 = haystack_doc[haystack_doc['PA_check'] == True]
|
82 |
+
df = haystack_doc[haystack_doc['PA_check'] == False]
|
83 |
+
if not classifier_model:
|
84 |
+
classifier_model = st.session_state['indicator_classifier']
|
85 |
+
|
86 |
+
predictions = classifier_model(list(df1.text))
|
87 |
+
|
88 |
+
list_ = []
|
89 |
+
for i in range(len(predictions)):
|
90 |
+
|
91 |
+
temp = predictions[i]
|
92 |
+
placeholder = {}
|
93 |
+
for j in range(len(temp)):
|
94 |
+
placeholder[temp[j]['label']] = temp[j]['score']
|
95 |
+
list_.append(placeholder)
|
96 |
+
labels_ = [{**list_[l]} for l in range(len(predictions))]
|
97 |
+
truth_df = DataFrame.from_dict(labels_)
|
98 |
+
truth_df = truth_df.round(2)
|
99 |
+
truth_df = truth_df.astype(float) >= threshold
|
100 |
+
truth_df = truth_df.astype(str)
|
101 |
+
categories = list(truth_df.columns)
|
102 |
+
truth_df['Indicator Label'] = truth_df.apply(lambda x: {i if x[i]=='True' else
|
103 |
+
None for i in categories}, axis=1)
|
104 |
+
truth_df['Indicator Label'] = truth_df.apply(lambda x: list(x['Indicator Label']
|
105 |
+
-{None}),axis=1)
|
106 |
+
df1['Indicator Label'] = list(truth_df['Indicator Label'])
|
107 |
+
df = pd.concat([df,df1])
|
108 |
+
df = df.drop(columns = ['PA_check'])
|
109 |
+
return df
|
utils/policyaction_classifier.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from typing_extensions import Literal
|
3 |
+
import logging
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import DataFrame, Series
|
6 |
+
from utils.config import getconfig
|
7 |
+
from utils.preprocessing import processingpipeline
|
8 |
+
import streamlit as st
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
## Labels dictionary ###
|
12 |
+
_lab_dict = {
|
13 |
+
'NEGATIVE':'NO TARGET INFO',
|
14 |
+
'TARGET':'TARGET',
|
15 |
+
}
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def load_policyactionClassifier(config_file:str = None, classifier_name:str = None):
|
19 |
+
"""
|
20 |
+
loads the document classifier using haystack, where the name/path of model
|
21 |
+
in HF-hub as string is used to fetch the model object.Either configfile or
|
22 |
+
model should be passed.
|
23 |
+
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
24 |
+
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
25 |
+
Params
|
26 |
+
--------
|
27 |
+
config_file: config file path from which to read the model name
|
28 |
+
classifier_name: if modelname is passed, it takes a priority if not \
|
29 |
+
found then will look for configfile, else raise error.
|
30 |
+
Return: document classifier model
|
31 |
+
"""
|
32 |
+
if not classifier_name:
|
33 |
+
if not config_file:
|
34 |
+
logging.warning("Pass either model name or config file")
|
35 |
+
return
|
36 |
+
else:
|
37 |
+
config = getconfig(config_file)
|
38 |
+
classifier_name = config.get('policyaction','MODEL')
|
39 |
+
|
40 |
+
logging.info("Loading classifier")
|
41 |
+
|
42 |
+
doc_classifier = pipeline("text-classification",
|
43 |
+
model=classifier_name,
|
44 |
+
return_all_scores=True,
|
45 |
+
function_to_apply= "sigmoid")
|
46 |
+
|
47 |
+
return doc_classifier
|
48 |
+
|
49 |
+
|
50 |
+
@st.cache_data
|
51 |
+
def policyaction_classification(haystack_doc:pd.DataFrame,
|
52 |
+
threshold:float = 0.5,
|
53 |
+
classifier_model:pipeline= None
|
54 |
+
)->Tuple[DataFrame,Series]:
|
55 |
+
"""
|
56 |
+
Text-Classification on the list of texts provided. Classifier provides the
|
57 |
+
most appropriate label for each text. these labels are in terms of if text
|
58 |
+
belongs to which particular Sustainable Devleopment Goal (SDG).
|
59 |
+
Params
|
60 |
+
---------
|
61 |
+
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
62 |
+
contains the list of paragraphs in different format,here the list of
|
63 |
+
Haystack Documents is used.
|
64 |
+
threshold: threshold value for the model to keep the results from classifier
|
65 |
+
classifiermodel: you can pass the classifier model directly,which takes priority
|
66 |
+
however if not then looks for model in streamlit session.
|
67 |
+
In case of streamlit avoid passing the model directly.
|
68 |
+
Returns
|
69 |
+
----------
|
70 |
+
df: Dataframe with two columns['SDG:int', 'text']
|
71 |
+
x: Series object with the unique SDG covered in the document uploaded and
|
72 |
+
the number of times it is covered/discussed/count_of_paragraphs.
|
73 |
+
"""
|
74 |
+
logging.info("Working on Policy/Action. Extraction")
|
75 |
+
haystack_doc['Policy-Action Label'] = 'NA'
|
76 |
+
if not classifier_model:
|
77 |
+
classifier_model = st.session_state['policyaction_classifier']
|
78 |
+
|
79 |
+
predictions = classifier_model(list(haystack_doc.text))
|
80 |
+
list_ = []
|
81 |
+
for i in range(len(predictions)):
|
82 |
+
|
83 |
+
temp = predictions[i]
|
84 |
+
placeholder = {}
|
85 |
+
for j in range(len(temp)):
|
86 |
+
placeholder[temp[j]['label']] = temp[j]['score']
|
87 |
+
list_.append(placeholder)
|
88 |
+
labels_ = [{**list_[l]} for l in range(len(predictions))]
|
89 |
+
truth_df = DataFrame.from_dict(labels_)
|
90 |
+
truth_df = truth_df.round(2)
|
91 |
+
truth_df = truth_df.astype(float) >= threshold
|
92 |
+
truth_df = truth_df.astype(str)
|
93 |
+
categories = list(truth_df.columns)
|
94 |
+
truth_df['Policy-Action Label'] = truth_df.apply(lambda x: {i if x[i]=='True'
|
95 |
+
else None for i in categories}, axis=1)
|
96 |
+
truth_df['Policy-Action Label'] = truth_df.apply(lambda x:
|
97 |
+
list(x['Policy-Action Label'] -{None}),axis=1)
|
98 |
+
|
99 |
+
haystack_doc['Policy-Action Label'] = list(truth_df['Policy-Action Label'])
|
100 |
+
|
101 |
+
return haystack_doc
|
utils/sector_classifier.py
CHANGED
@@ -76,12 +76,12 @@ def sector_classification(haystack_doc:pd.DataFrame,
|
|
76 |
"""
|
77 |
logging.info("Working on Sector Identification")
|
78 |
haystack_doc['Sector Label'] = 'NA'
|
79 |
-
|
80 |
-
|
81 |
if not classifier_model:
|
82 |
classifier_model = st.session_state['sector_classifier']
|
83 |
|
84 |
-
predictions = classifier_model(list(
|
85 |
|
86 |
list_ = []
|
87 |
for i in range(len(predictions)):
|
@@ -101,6 +101,6 @@ def sector_classification(haystack_doc:pd.DataFrame,
|
|
101 |
None for i in categories}, axis=1)
|
102 |
truth_df['Sector Label'] = truth_df.apply(lambda x: list(x['Sector Label']
|
103 |
-{None}),axis=1)
|
104 |
-
|
105 |
-
|
106 |
-
return
|
|
|
76 |
"""
|
77 |
logging.info("Working on Sector Identification")
|
78 |
haystack_doc['Sector Label'] = 'NA'
|
79 |
+
# df1 = haystack_doc[haystack_doc['Target Label'] == 'TARGET']
|
80 |
+
# df = haystack_doc[haystack_doc['Target Label'] == 'NEGATIVE']
|
81 |
if not classifier_model:
|
82 |
classifier_model = st.session_state['sector_classifier']
|
83 |
|
84 |
+
predictions = classifier_model(list(haystack_doc.text))
|
85 |
|
86 |
list_ = []
|
87 |
for i in range(len(predictions)):
|
|
|
101 |
None for i in categories}, axis=1)
|
102 |
truth_df['Sector Label'] = truth_df.apply(lambda x: list(x['Sector Label']
|
103 |
-{None}),axis=1)
|
104 |
+
haystack_doc['Sector Label'] = list(truth_df['Sector Label'])
|
105 |
+
# df = pd.concat([df,df1])
|
106 |
+
return haystack_doc
|