Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,012 Bytes
f3a1940 5f41368 e4ce8fe f3a1940 e4ce8fe f17e764 e4ce8fe f17e764 3d9250a f17e764 cce39ff f17e764 2eaf511 5ca912a cce39ff da4441d f17e764 d7f99ce da4441d f17e764 6cad12f f3a1940 6cad12f cce39ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import pandas as pd
import numpy as np
from scipy.sparse import csr_matrix, coo_matrix
import streamlit as st
# multi_project_matching
def calc_matches(filtered_df, project_df, similarity_matrix, top_x):
st.write(filtered_df.shape)
st.write(project_df.shape)
st.write(similarity_matrix.shape)
# Ensure the matrix is in a suitable format for manipulation
if not isinstance(similarity_matrix, csr_matrix):
similarity_matrix = csr_matrix(similarity_matrix)
filtered_indices = filtered_df.index.to_list()
project_indices = project_df.index.to_list()
match_matrix = similarity_matrix[project_indices, :][:, filtered_indices]
dense_match_matrix = match_matrix.toarray()
st.write(dense_match_matrix.shape)
"""
p1_df = filtered_df.loc[top_col_indices].copy()
p1_df['similarity'] = top_values
p2_df = project_df.loc[top_row_indices].copy()
p2_df['similarity'] = top_values
print("finished calc matches")
return p1_df, p2_df
"""
|