Jan Mühlnikel commited on
Commit
4ec3ad0
·
1 Parent(s): 7bccfb7

experiment

Browse files
Files changed (1) hide show
  1. functions/calc_matches.py +0 -25
functions/calc_matches.py CHANGED
@@ -55,30 +55,6 @@ def calc_matches(filtered_df, project_df, similarity_matrix, top_x):
55
 
56
  st.write(match_matrix.shape)
57
 
58
- flattened_indices = np.argsort(match_matrix, axis=None)[-15:]
59
-
60
- # Step 2: Convert flattened indices to 2D indices
61
- row_indices, col_indices = np.unravel_index(flattened_indices, match_matrix.shape)
62
-
63
- # Step 3: Extract the top 15 values and their corresponding indices
64
- top_values = match_matrix[row_indices, col_indices]
65
- top_indices = list(zip(row_indices, col_indices, top_values))
66
-
67
- # Step 4: Sort the indices and values based on the values in descending order
68
- top_15_indices_sorted = sorted(top_indices, key=lambda x: x[2], reverse=True)
69
-
70
- # Display the results
71
- for idx, (row, col, value) in enumerate(top_15_indices_sorted):
72
- st.write(f"Rank {idx + 1}: Value = {value}, Row Index = {row}, Column Index = {col}")
73
-
74
- p1_df = project_df.iloc[row_indices].copy()
75
- p1_df['similarity'] = top_values
76
- p2_df = project_df.iloc[col_indices].copy()
77
- p2_df['similarity'] = top_values
78
-
79
- return p1_df, p2_df
80
-
81
- """
82
  # Get the linear indices of the top 'top_x' values
83
  # (flattened index to handle the sparse matrix more effectively)
84
  linear_indices = np.argsort(match_matrix.data)[-top_x:]
@@ -100,5 +76,4 @@ def calc_matches(filtered_df, project_df, similarity_matrix, top_x):
100
  print("finished calc matches")
101
 
102
  return p1_df, p2_df
103
- """
104
 
 
55
 
56
  st.write(match_matrix.shape)
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  # Get the linear indices of the top 'top_x' values
59
  # (flattened index to handle the sparse matrix more effectively)
60
  linear_indices = np.argsort(match_matrix.data)[-top_x:]
 
76
  print("finished calc matches")
77
 
78
  return p1_df, p2_df
 
79