ppsingh's picture
Update app.py
a4730ef verified
raw
history blame
5.48 kB
import streamlit as st
import pandas as pd
from langchain_text_splitters import TokenTextSplitter
from langchain.docstore.document import Document
from torch import cuda
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import Qdrant
from qdrant_client import QdrantClient
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
device = 'cuda' if cuda.is_available() else 'cpu'
st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("SEARCH IATI Database")
var=st.text_input("enter keyword")
def create_chunks(text):
text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=0)
texts = text_splitter.split_text(text)
return texts
def get_chunks():
orgas_df = pd.read_csv("iati_files/project_orgas.csv")
region_df = pd.read_csv("iati_files/project_region.csv")
sector_df = pd.read_csv("iati_files/project_sector.csv")
status_df = pd.read_csv("iati_files/project_status.csv")
texts_df = pd.read_csv("iati_files/project_texts.csv")
projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner')
giz_df = projects_df[projects_df.client.str.contains('bmz')].reset_index(drop=True)
giz_df.drop(columns= ['orga_abbreviation', 'client',
'orga_full_name', 'country',
'country_flag', 'crs_5_code', 'crs_3_code',
'sgd_pred_code'], inplace=True)
giz_df['text_size'] = giz_df.apply(lambda x: len((x['title_main'] + x['description_main']).split()), axis=1)
giz_df['chunks'] = giz_df.apply(lambda x:create_chunks(x['title_main'] + x['description_main']),axis=1)
giz_df = giz_df.explode(column=['chunks'], ignore_index=True)
placeholder= []
for i in range(len(giz_df)):
placeholder.append(Document(page_content= giz_df.loc[i,'chunks'],
metadata={"iati_id": giz_df.loc[i,'iati_id'],
"iati_orga_id":giz_df.loc[i,'iati_orga_id'],
"country_name":str(giz_df.loc[i,'country_name']),
"crs_5_name": giz_df.loc[i,'crs_5_name'],
"crs_3_name": giz_df.loc[i,'crs_3_name'],
"sgd_pred_str":giz_df.loc[i,'sgd_pred_str'],
"status":giz_df.loc[i,'status'],
"title_main":giz_df.loc[i,'title_main'],}))
return placeholder
def embed_chunks(chunks):
embeddings = HuggingFaceEmbeddings(
model_kwargs = {'device': device},
encode_kwargs = {'normalize_embeddings': True},
model_name='BAAI/bge-m3'
)
# placeholder for collection
print("starting embedding")
qdrant_collections = {}
qdrant_collections['all'] = Qdrant.from_documents(
chunks,
embeddings,
path="/data/local_qdrant",
collection_name='all',
)
print(qdrant_collections)
print("vector embeddings done")
return qdrant_collections
@st.cache_resource
def get_local_qdrant():
"""once the local qdrant server is created this is used to make the connection to exisitng server"""
qdrant_collections = {}
embeddings = HuggingFaceEmbeddings(
model_kwargs = {'device': device},
encode_kwargs = {'normalize_embeddings': True},
model_name='BAAI/bge-m3')
client = QdrantClient(path="/data/local_qdrant")
print("Collections in local Qdrant:",client.get_collections())
qdrant_collections['all'] = Qdrant(client=client, collection_name='all', embeddings=embeddings, )
return qdrant_collections
def get_context(vectorstore,query):
# create metadata filter
# getting context
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold",
search_kwargs={"score_threshold": 0.5,
"k": 10,})
# # re-ranking the retrieved results
# model = HuggingFaceCrossEncoder(model_name=model_config.get('ranker','MODEL'))
# compressor = CrossEncoderReranker(model=model, top_n=int(model_config.get('ranker','TOP_K')))
# compression_retriever = ContextualCompressionRetriever(
# base_compressor=compressor, base_retriever=retriever
# )
context_retrieved = retriever.invoke(query)
print(f"retrieved paragraphs:{len(context_retrieved)}")
return context_retrieved
#chunks = get_chunks()
vectorstores = get_local_qdrant()
vectorstore = vectorstores['all']
button=st.button("search")
results= get_context(vectorstore, f"find the relvant paragraphs for: {var}")
if button:
st.write(f"Found {len(results)} results for query:{var}")
for i in results:
st.subheader(i.metadata['iati_id']+":"+i.metadata['title_main'])
st.caption(f"Status:{i.metadata['status']}, Country:{i.metadata['country_name']}")
st.write(i.page_content)
st.divider()