import streamlit as st import pandas as pd from langchain_text_splitters import TokenTextSplitter from langchain.docstore.document import Document from torch import cuda from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings device = 'cuda' if cuda.is_available() else 'cpu' st.set_page_config(page_title="SEARCH IATI",layout='wide') st.title("SEARCH IATI Database") var=st.text_input("enter keyword") title = var.replace(' ','+') def create_chunks(text): text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=0) texts = text_splitter.split_text(text) return texts def get_chunks(): orgas_df = pd.read_csv("iati_files/project_orgas.csv") region_df = pd.read_csv("iati_files/project_region.csv") sector_df = pd.read_csv("iati_files/project_sector.csv") status_df = pd.read_csv("iati_files/project_status.csv") texts_df = pd.read_csv("iati_files/project_texts.csv") projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner') projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner') projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner') projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner') giz_df = projects_df[projects_df.client.str.contains('bmz')].reset_index(drop=True) giz_df.drop(columns= ['orga_abbreviation', 'client', 'orga_full_name', 'country', 'country_flag', 'crs_5_code', 'crs_3_code', 'sgd_pred_code'], inplace=True) giz_df['text_size'] = giz_df.apply(lambda x: len((x['title_main'] + x['description_main']).split()), axis=1) giz_df['chunks'] = giz_df.apply(lambda x:create_chunks(x['title_main'] + x['description_main']),axis=1) giz_df = giz_df.explode(column=['chunks'], ignore_index=True) placeholder= [] for i in range(len(giz_df)): placeholder.append(Document(page_content= giz_df.loc[i,'chunks'], metadata={"iati_id": giz_df.loc[i,'iati_id'], "iati_orga_id":giz_df.loc[i,'iati_orga_id'], "country_name":str(giz_df.loc[i,'country_name']), "crs_5_name": giz_df.loc[i,'crs_5_name'], "crs_3_name": giz_df.loc[i,'crs_3_name'], "sgd_pred_str":giz_df.loc[i,'sgd_pred_str'], "status":giz_df.loc[i,'status'], "title_main":giz_df.loc[i,'title_main'],})) return placeholder def embed_chunks(chunks): embeddings = HuggingFaceEmbeddings( model_kwargs = {'device': device}, encode_kwargs = {'normalize_embeddings': True}, model_name='BAAI/bge-m3' ) # placeholder for collection qdrant_collections = {} qdrant_collections['all'] = Qdrant.from_documents( chunks, embeddings, path="/data/local_qdrant", collection_name='all', ) print(qdrant_collections) print("vector embeddings done") return qdrant_collections chunks = get_chunks() qdrant_col = embed_chunks(chunks) button=st.button("search") if button : st.write(chunks[0])