import pandas as pd path_to_data = "./docStore/" from appStore.prep_utils import create_chunks from appStore.search import hybrid_search def process_iati(): """ this will read the iati files and create the chunks """ orgas_df = pd.read_csv(f"{path_to_data}iati_files/project_orgas.csv") region_df = pd.read_csv(f"{path_to_data}iati_files/project_region.csv") sector_df = pd.read_csv(f"{path_to_data}iati_files/project_sector.csv") status_df = pd.read_csv(f"{path_to_data}iati_files/project_status.csv") texts_df = pd.read_csv(f"{path_to_data}iati_files/project_texts.csv") projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner') projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner') projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner') projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner') projects_df = projects_df[projects_df.client.str.contains('bmz')].reset_index(drop=True) projects_df.drop(columns= ['orga_abbreviation', 'client', 'orga_full_name', 'country', 'country_flag', 'crs_5_code', 'crs_3_code','country_code_list', 'sgd_pred_code','crs_5_name', 'crs_3_name', 'sgd_pred_str'], inplace=True) #print(projects_df.columns) projects_df['text_size'] = projects_df.apply(lambda x: len((x['title_main'] + x['description_main']).split()), axis=1) projects_df['chunks'] = projects_df.apply(lambda x:create_chunks(x['title_main'] + x['description_main']),axis=1) projects_df = projects_df.explode(column=['chunks'], ignore_index=True) projects_df['source'] = 'IATI' projects_df.rename(columns = {'iati_id':'id','iati_orga_id':'org'}, inplace=True) return projects_df def process_giz_worldwide(): """ this will read the giz_worldwide files and create the chunks """ giz_df = pd.read_json(f'{path_to_data}giz_worldwide/data_giz_website.json') giz_df = giz_df.rename(columns={'content':'project_description'}) giz_df['text_size'] = giz_df.apply(lambda x: len((x['project_name'] + x['project_description']).split()), axis=1) giz_df['chunks'] = giz_df.apply(lambda x:create_chunks(x['project_name'] + x['project_description']),axis=1) print("initial df length:",len(giz_df)) giz_df = giz_df.explode(column=['chunks'], ignore_index=True) print("new df length:",len(giz_df)) print(giz_df.columns) #giz_df.drop(columns = ['filename', 'url', 'name', 'mail', # 'language', 'start_year', 'end_year','poli_trager'], inplace=True) giz_df['source'] = 'GIZ_WORLDWIDE' return giz_df def remove_duplicates(results_list): """ Return a new list of results with duplicates removed, based on 'url' in metadata. """ unique_results = [] seen_urls = set() for r in results_list: # Safely get the URL from metadata url = r.payload['metadata'].get('url', None) if url not in seen_urls: seen_urls.add(url) unique_results.append(r) return unique_results def get_max_end_year(_client, collection_name): """ Return the maximum 'end_year' in the entire collection so we can set the slider's max_value dynamically. """ # For safety, get a large pool of items all_res = hybrid_search(_client, "", collection_name, limit=2000) big_list = all_res[0] + all_res[1] years = [] for r in big_list: metadata = r.payload.get('metadata', {}) year_str = metadata.get('end_year', None) if year_str: try: years.append(float(year_str)) except ValueError: pass if not years: # fallback if no valid end years found return 2030 return int(max(years))