File size: 3,600 Bytes
22b8e0b 65be500 72e4dad 22b8e0b 65be500 4db751e 65be500 04e18ca e6f1b7c 04e18ca e6f1b7c 22b8e0b 34cf2d4 22b8e0b 34cf2d4 22b8e0b ce1209f bcb73d0 0b6eae0 4db751e 0b6eae0 ce1209f 4d6a5c3 0b6eae0 22b8e0b 04e18ca 56a71ff 482fd47 4db751e 482fd47 56a71ff 4db751e 22b8e0b cd094a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import streamlit as st
def app():
with open('style.css') as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center; \
color: black;'> Policy Action Tracker</h2>",
unsafe_allow_html=True)
st.markdown("<div style='text-align: center; \
color: grey;'>The Policy Action Tracker is an open-source\
digital tool which aims to assist policy analysts and \
other users in extracting and filtering relevant \
information from public documents.</div>",
unsafe_allow_html=True)
footer = """
<div class="footer-custom">
Guidance & Feedback - <a href="https://www.linkedin.com/in/maren-bernlöhr-149891222" target="_blank">Maren Bernlöhr</a> |
<a href="https://www.linkedin.com/in/manuelkuhm" target="_blank">Manuel Kuhm</a> |
Developer - <a href="https://www.linkedin.com/in/erik-lehmann-giz/" target="_blank">Erik Lehmann</a> |
<a href="https://www.linkedin.com/in/jonas-nothnagel-bb42b114b/" target="_blank">Jonas Nothnagel</a> |
<a href="https://www.linkedin.com/in/prashantpsingh/" target="_blank">Prashant Singh</a> |
</div>
"""
st.markdown(footer, unsafe_allow_html=True)
c1, c2, c3 = st.columns([8,1,12])
with c1:
st.image("docStore/img/ndc.png")
with c3:
st.markdown('<div style="text-align: justify;">The manual extraction \
of relevant information from text documents is a \
time-consuming task for any policy analyst. As the amount and length of \
public policy documents in relation to sustainable development (such as \
National Development Plans and Nationally Determined Contributions) \
continuously increases, a major challenge for policy action tracking – the \
evaluation of stated goals and targets and their actual implementation on \
the ground – arises. Luckily, Artificial Intelligence (AI) and Natural \
Language Processing (NLP) methods can help in shortening and easing this \
task for policy analysts.</div><br>',
unsafe_allow_html=True)
intro = """
<div style="text-align: justify;">
For this purpose, the United Nations Sustainable Development Solutions \
Network (SDSN) and the Deutsche Gesellschaft für Internationale \
Zusammenarbeit (GIZ) GmbH are collaborated in the development \
of this AI-powered open-source web application that helps find and extract \
relevant information from public policy documents faster to facilitate \
evidence-based decision-making processes in sustainable development and beyond.
This tool allows policy analysts and other users the possibility to rapidly \
search for relevant information/paragraphs in the document according to the \
user’s interest, classify the document’s content according to the Sustainable \
Development Goals (SDGs), and compare climate-related policy documents and NDCs \
across countries using open data from the German Institute of Development and \
Sustainability’s (IDOS) NDC Explorer.
To understand the application's functionalities and learn more about ß
the project, see the attached concept note. We hope you like our application 😊
</div>
<br>
"""
st.markdown(intro, unsafe_allow_html=True)
# st.image("docStore/img/paris.png")
|