Spaces:
Runtime error
Runtime error
File size: 11,637 Bytes
e13ca11 2e537f7 eac3e5b 3248077 723ac7e c4bb3a1 723ac7e d5a9071 6fb73c4 723ac7e d5a9071 723ac7e d5a9071 723ac7e 1075df3 723ac7e 1075df3 d5a9071 723ac7e d5a9071 723ac7e d5a9071 e461efe 6216345 e461efe d5a9071 e461efe 2e537f7 a7b80ba 2e537f7 d26ce45 2e537f7 22666cd 2e537f7 22666cd 2e537f7 4739ff2 2e537f7 4739ff2 2e537f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import gradio as gr
import pandas as pd
import numpy as np
import os
import time
import re
import json
from auditqa.sample_questions import QUESTIONS
from auditqa.reports import POSSIBLE_REPORTS
from auditqa.engine.prompts import audience_prompts, answer_prompt_template
from auditqa.doc_process import process_pdf
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain.llms import HuggingFaceEndpoint
from dotenv import load_dotenv
load_dotenv()
HF_token = os.environ["HF_TOKEN"]
vectorstores = process_pdf()
async def chat(query,history,audience,sources,reports):
"""taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
(messages in gradio format, messages in langchain format, source documents)"""
print(f">> NEW QUESTION : {query}")
print(f"history:{history}")
print(f"audience:{audience}")
print(f"sources:{sources}")
print(f"reports:{reports}")
docs_html = ""
output_query = ""
output_language = "english"
if audience == "Children":
audience_prompt = audience_prompts["children"]
elif audience == "General public":
audience_prompt = audience_prompts["general"]
elif audience == "Experts":
audience_prompt = audience_prompts["experts"]
else:
audience_prompt = audience_prompts["experts"]
# Prepare default values
if len(sources) == 0:
sources = ["ABC"]
if len(reports) == 0:
reports = []
if sources == ["ABC"]:
vectorstore = vectorstores["ABC"]
else:
vectorstore = vectorstores["XYZ"]
# get context
context_retrieved_lst = []
question_lst= [query]
for question in question_lst:
retriever = vectorstore.as_retriever(
search_type="similarity",
search_kwargs={"k": 1})
context_retrieved = retriever.get_relevant_documents(question)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
context_retrieved_formatted = format_docs(context_retrieved)
context_retrieved_lst.append(context_retrieved_formatted)
# get prompt
prompt = ChatPromptTemplate.from_template(answer_prompt_template)
# get llm
llm_qa = HuggingFaceEndpoint(
endpoint_url= "https://fesg9gjsfde5yfr4.us-east-1.aws.endpoints.huggingface.cloud",
task="text-generation",
huggingfacehub_api_token=HF_token,
model_kwargs={})
# create rag chain
chain = prompt | llm_qa | StrOutputParser()
# get answers
answer_lst = []
for question, context in zip(question_list , context_retrieved_lst):
answer = chain.invoke({"context": context, "question": question,'audience':audience_prompt, 'language':'english'})
answer_lst.append(answer)
docs_html = []
for i, d in enumerate(context_retrieved, 1):
docs_html.append(make_html_source(d, i))
docs_html = "".join(docs_html)
previous_answer = history[-1][1]
previous_answer = previous_answer if previous_answer is not None else ""
answer_yet = previous_answer + answer_lst[0]
answer_yet = parse_output_llm_with_sources(answer_yet)
history[-1] = (query,answer_yet)
history = [tuple(x) for x in history]
yield history,docs_html,output_query,output_language
def make_html_source(source,i):
meta = source.metadata
# content = source.page_content.split(":",1)[1].strip()
content = source.page_content.strip()
toc_levels = []
for j in range(2):
level = meta[f"toc_level{j}"]
if level != "N/A":
toc_levels.append(level)
else:
break
toc_levels = " > ".join(toc_levels)
if len(toc_levels) > 0:
name = f"<b>{toc_levels}</b><br/>{meta['name']}"
else:
name = meta['name']
if meta["chunk_type"] == "text":
card = f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i} - {meta['short_name']} - Page {int(meta['page_number'])}</h2>
<p>{content}</p>
</div>
<div class="card-footer">
<span>{name}</span>
<a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
<span role="img" aria-label="Open PDF">🔗</span>
</a>
</div>
</div>
"""
return card
# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------
# Set up Gradio Theme
theme = gr.themes.Base(
primary_hue="blue",
secondary_hue="red",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)
init_prompt = """
Hello, I am Audit Q&A, a conversational assistant designed to help you understand audit Reports. I will answer your questions by **crawling through the Audit reports publishsed by Auditor General Office**.
❓ How to use
- **Language**: You can ask me your questions in any language.
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
- **Sources**: You can choose to search in the Annual or District or Department focused reports, or all.
⚠️ Limitations
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*
What do you want to learn ?
"""
# Setting Tabs
with gr.Blocks(title="Audit Q&A", css="style.css", theme=theme,elem_id = "main-component") as demo:
# user_id_state = gr.State([user_id])
with gr.Tab("AuditQ&A"):
with gr.Row(elem_id="chatbot-row"):
with gr.Column(scale=2):
# state = gr.State([system_template])
chatbot = gr.Chatbot(
value=[(None,init_prompt)],
show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",
avatar_images = (None,"https://i.ibb.co/YNyd5W2/logo4.png"),
)#,avatar_images = ("assets/logo4.png",None))
# bot.like(vote,None,None)
with gr.Row(elem_id = "input-message"):
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,lines = 1,interactive = True,elem_id="input-textbox")
# submit = gr.Button("",elem_id = "submit-button",scale = 1,interactive = True,icon = "https://static-00.iconduck.com/assets.00/settings-icon-2048x2046-cw28eevx.png")
with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):
with gr.Tabs() as tabs:
with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
examples_hidden = gr.Textbox(visible = False)
first_key = list(QUESTIONS.keys())[0]
dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,interactive = True,show_label = True,label = "Select a category of sample questions",elem_id = "dropdown-samples")
samples = []
for i,key in enumerate(QUESTIONS.keys()):
examples_visible = True if i == 0 else False
with gr.Row(visible = examples_visible) as group_examples:
examples_questions = gr.Examples(
QUESTIONS[key],
[examples_hidden],
examples_per_page=8,
run_on_click=False,
elem_id=f"examples{i}",
api_name=f"examples{i}",
# label = "Click on the example question or enter your own",
# cache_examples=True,
)
samples.append(group_examples)
with gr.Tab("Sources",elem_id = "tab-citations",id = 1):
sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
docs_textbox = gr.State("")
# with Modal(visible = False) as config_modal:
with gr.Tab("Configuration",elem_id = "tab-config",id = 2):
gr.Markdown("Reminder: You can talk in any language, Audit Q&A is multi-lingual!")
dropdown_sources = gr.CheckboxGroup(
["ABC", "XYZ"],
label="Select source",
value=["ABC"],
interactive=True,
)
dropdown_reports = gr.Dropdown(
POSSIBLE_REPORTS,
label="Or select specific reports",
multiselect=True,
value=None,
interactive=True,
)
dropdown_audience = gr.Dropdown(
["Children","General public","Experts"],
label="Select audience",
value="Experts",
interactive=True,
)
output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False)
output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False)
with gr.Tab("About",elem_classes = "max-height other-tabs"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("See more info at [https://www.oag.go.ug/](https://www.oag.go.ug/welcome)")
def start_chat(query,history):
history = history + [(query,None)]
history = [tuple(x) for x in history]
return (gr.update(interactive = False),gr.update(selected=1),history)
def finish_chat():
return (gr.update(interactive = True,value = ""))
(textbox
.submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
.then(chat, [textbox,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language],concurrency_limit = 8,api_name = "chat_textbox")
.then(finish_chat, None, [textbox],api_name = "finish_chat_textbox")
)
(examples_hidden
.change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
.then(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language],concurrency_limit = 8,api_name = "chat_examples")
.then(finish_chat, None, [textbox],api_name = "finish_chat_examples")
)
def change_sample_questions(key):
index = list(QUESTIONS.keys()).index(key)
visible_bools = [False] * len(samples)
visible_bools[index] = True
return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]
dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
demo.queue()
demo.launch() |