Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 18,758 Bytes
c83f30f dee1f90 bc71919 c83f30f 654dbf3 c83f30f 22d5249 c83f30f c88b855 22d5249 1c586ef 26c9862 1c586ef bd02710 36c612e bd02710 a49b43b 6c397de 05dce6d 5be75f1 6c397de 3829a5f 6c397de 26c9862 3829a5f 5be75f1 2b7be76 26c9862 2b7be76 3829a5f 2b7be76 3829a5f 26c9862 e2e1a84 566e63f 8c51a88 83a6fef 93fa507 702b856 93fa507 83a6fef 9ce164b 83a6fef 9ce164b 83a6fef 93fa507 83a6fef 9ce164b 702b856 93fa507 9ce164b 9799da0 93fa507 650683f 9799da0 c9fc9f7 9799da0 c9fc9f7 650683f c9fc9f7 dee1f90 c9fc9f7 f059070 c9fc9f7 93fa507 9ce164b 93fa507 9ce164b 93fa507 9ce164b 93fa507 9ce164b 93fa507 79bc4e9 93fa507 702b856 ccf8ca1 22d5249 6c397de 0dbb0cd 7232d29 05dce6d e292b3f 5be75f1 7232d29 0dbb0cd 5be75f1 0dbb0cd e292b3f 28cb3ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import gradio as gr
import pandas as pd
import numpy as np
import os
import time
import re
import json
from auditqa.sample_questions import QUESTIONS
from auditqa.engine.prompts import audience_prompts
from auditqa.reports import files, report_list
from auditqa.doc_process import process_pdf, get_local_qdrant
from langchain_core.messages import (
HumanMessage,
SystemMessage,
)
from langchain_huggingface import ChatHuggingFace
from langchain_core.output_parsers import StrOutputParser
from langchain_huggingface import HuggingFaceEndpoint
#from qdrant_client import QdrantClient
from dotenv import load_dotenv
import pkg_resources
load_dotenv()
HF_token = os.environ["HF_TOKEN"]
#installed_packages = pkg_resources.working_set
#package_list_ = ""
#for package in installed_packages:
# package_list_ = package_list_ + f"{package.key}=={package.version}\n"
#print(package_list_)
######## Vector Store #######
# process all files and get the vectorstores collections
# vectorestore colection are stored on persistent storage so this needs to be run only once
# hence, comment out line below when creating for first time
# vectorstores = process_pdf()
# once the vectore embeddings are created we will qdrant client to access these
vectorstores = get_local_qdrant()
# -------------------------------------------------------------
# Functions
# -------------------------------------------------------------
def make_html_source(source,i):
"""
takes the text and converts it into html format for display in "source" side tab
"""
meta = source.metadata
# content = source.page_content.split(":",1)[1].strip()
content = source.page_content.strip()
name = meta['source']
card = f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i} - {meta['file_path']} - Page {int(meta['page'])}</h2>
<p>{content}</p>
</div>
<div class="card-footer">
<span>{name}</span>
<a href="{meta['file_path']}#page={int(meta['page'])}" target="_blank" class="pdf-link">
<span role="img" aria-label="Open PDF">🔗</span>
</a>
</div>
</div>
"""
return card
def parse_output_llm_with_sources(output):
# Split the content into a list of text and "[Doc X]" references
content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
parts = []
for part in content_parts:
if part.startswith("Doc"):
subparts = part.split(",")
subparts = [subpart.lower().replace("doc","").strip() for subpart in subparts]
subparts = [f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup>{subpart}</sup></span></a>""" for subpart in subparts]
parts.append("".join(subparts))
else:
parts.append(part)
content_parts = "".join(parts)
return content_parts
def start_chat(query,history):
history = history + [(query,None)]
history = [tuple(x) for x in history]
return (gr.update(interactive = False),gr.update(selected=1),history)
def finish_chat():
return (gr.update(interactive = True,value = ""))
async def chat(query,history,sources,reports,subtype,year):
"""taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
(messages in gradio format, messages in langchain format, source documents)"""
print(f">> NEW QUESTION : {query}")
print(f"history:{history}")
#print(f"audience:{audience}")
print(f"sources:{sources}")
print(f"reports:{reports}")
print(f"subtype:{subtype}")
print(f"year:{year}")
docs_html = ""
output_query = ""
##------------------------decide which collection to fetch------------------------------
if len(reports) == 0:
print("done")
#vectorstore = get_local_qdrant(client,sources)
else:
print("done")
#vectorstore = get_local_qdrant(client,"allreports")
##------------------------------get context----------------------------------------------------
#context_retrieved_lst = []
#question_lst= [query]
#for question in question_lst:
# retriever = vectorstore.as_retriever(
# search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.6, "k": 3})
#
# context_retrieved = retriever.invoke(question)
#
# def format_docs(docs):
# return "\n\n".join(doc.page_content for doc in docs)
# context_retrieved_formatted = format_docs(context_retrieved)
# context_retrieved_lst.append(context_retrieved_formatted)
# print(context_retrieved_lst)
yield history,docs_html
#process_pdf()
# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------
# Set up Gradio Theme
theme = gr.themes.Base(
primary_hue="blue",
secondary_hue="red",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
text_size = gr.themes.utils.sizes.text_sm,
)
init_prompt = """
Hello, I am Audit Q&A, a conversational assistant designed to help you understand audit Reports. I will answer your questions by using **Audit reports publishsed by Auditor General Office**.
💡 How to use (tabs on right)
- **Reports**: You can choose to address your question to either specific report or a collection of report like District or Ministry focused reports. \
If you dont select any then the Consolidated report is relied upon to answer your question.
- **Examples**: We have curated some example questions,select a particular question from category of questions.
- **Sources**: This tab will display the relied upon paragraphs from the report, to help you in assessing or fact checking if the answer provided by Audit Q&A assitant is correct or not.
⚠️ For limitations of the tool please check **Disclaimer** tab.
"""
with gr.Blocks(title="Audit Q&A", css= "style.css", theme=theme,elem_id = "main-component") as demo:
#----------------------------------------------------------------------------------------------
# main tab where chat interaction happens
# ---------------------------------------------------------------------------------------------
with gr.Tab("AuditQ&A"):
with gr.Row(elem_id="chatbot-row"):
# chatbot output screen
with gr.Column(scale=2):
chatbot = gr.Chatbot(
value=[(None,init_prompt)],
show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",
avatar_images = (None,"data-collection.png"),
)
with gr.Row(elem_id = "input-message"):
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,
lines = 1,interactive = True,elem_id="input-textbox")
# second column with playground area for user to select values
with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):
# creating tabs on right panel
with gr.Tabs() as tabs:
################## tab for REPORTS SELECTION ##########
with gr.Tab("Reports",elem_id = "tab-config",id = 2):
gr.Markdown("Reminder: To get better results select the specific report/reports")
#### First level filter for selecting Report source/category
dropdown_sources = gr.Radio(
["Consolidated", "District","Ministry"],
label="Select Report Category",
value="Consolidated",
interactive=True,
)
#### second level filter for selecting subtype within the report category selected above
dropdown_category = gr.Dropdown(
list(files["Consolidated"].keys()),
value = list(files["Consolidated"].keys())[0],
label = "Filter for Sub-Type",
interactive=True)
#### update the secodn level filter abse don values from first level
def rs_change(rs):
return gr.update(choices=files[rs], value=list(files[rs].keys())[0])
dropdown_sources.change(fn=rs_change, inputs=[dropdown_sources], outputs=[dropdown_category])
#### Select the years for reports
dropdown_year = gr.Dropdown(
[2018,2019,2020,2021,2022],
label="Filter for year",
multiselect=True,
value=[2022],
interactive=True,
)
gr.Markdown("-------------------------------------------------------------------------")
##### Another way to select reports across category and sub-type
dropdown_reports = gr.Dropdown(
report_list,
label="Or select specific reports",
multiselect=True,
value=[],
interactive=True,)
############### tab for Question selection ###############
with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
examples_hidden = gr.Textbox(visible = False)
# getting defualt key value to display
first_key = list(QUESTIONS.keys())[0]
# create the question category dropdown
dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,
interactive = True,show_label = True,
label = "Select a category of sample questions",
elem_id = "dropdown-samples")
# iterate through the questions list
samples = []
for i,key in enumerate(QUESTIONS.keys()):
examples_visible = True if i == 0 else False
with gr.Row(visible = examples_visible) as group_examples:
examples_questions = gr.Examples(
QUESTIONS[key],
[examples_hidden],
examples_per_page=8,
run_on_click=False,
elem_id=f"examples{i}",
api_name=f"examples{i}",
# label = "Click on the example question or enter your own",
# cache_examples=True,
)
samples.append(group_examples)
########## tab for Sources reporting #################
with gr.Tab("Sources",elem_id = "tab-citations",id = 1):
sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
docs_textbox = gr.State("")
gr.Markdown("Reminder: To get better results select the specific report/reports")
def change_sample_questions(key):
# update the questions list based on key selected
index = list(QUESTIONS.keys()).index(key)
visible_bools = [False] * len(samples)
visible_bools[index] = True
return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]
dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
# static tab 'about us'
with gr.Tab("About",elem_classes = "max-height other-tabs"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""The <ins>[**Office of the Auditor General (OAG)**](https://www.oag.go.ug/welcome)</ins> in Uganda, \
consistent with the mandate of Supreme Audit Institutions (SAIs),\
remains integral in ensuring transparency and fiscal responsibility.\
Regularly, the OAG submits comprehensive audit reports to Parliament, \
which serve as instrumental references for both policymakers and the public, \
facilitating informed decisions regarding public expenditure.
However, the prevalent underutilization of these audit reports, \
leading to numerous unimplemented recommendations, has posed significant challenges\
to the effectiveness and impact of the OAG's operations. The audit reports made available \
to the public have not been effectively used by them and other relevant stakeholders. \
The current format of the audit reports is considered a challenge to the \
stakeholders' accessibility and usability. This in one way constrains transparency \
and accountability in the utilization of public funds and effective service delivery.
In the face of this, modern advancements in Artificial Intelligence (AI),\
particularly Retrieval Augmented Generation (RAG) technology, \
emerge as a promising solution. By harnessing the capabilities of such AI tools, \
there is an opportunity not only to improve the accessibility and understanding \
of these audit reports but also to ensure that their insights are effectively \
translated into actionable outcomes, thereby reinforcing public transparency \
and service delivery in Uganda.
To address these issues, the OAG has initiated several projects, \
such as the Audit Recommendation Tracking (ART) System and the Citizens Feedback Platform (CFP). \
These systems are designed to increase the transparency and relevance of audit activities. \
However, despite these efforts, engagement and awareness of the audit findings remain low, \
and the complexity of the information often hinders effective public utilization. Recognizing the need for further\
enhancement in how audit reports are processed and understood, \
the **Civil Society and Budget Advocacy Group (CSBAG)** in partnership with the **GIZ**, \
has recognizing the need for further enhancement in how audit reports are processed and understood.
This prototype tool leveraging AI (Artificial Intelligence) aims at offering critical capabilities such as '
summarizing complex texts, extracting thematic insights, and enabling interactive, \
user-friendly analysis through a chatbot interface. By making the audit reports more accessible,\
this aims to increase readership and utilization among stakeholders, \
which can lead to better accountability and improve service delivery
""")
# static tab for disclaimer
with gr.Tab("Disclaimer",elem_classes = "max-height other-tabs"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
- This chatbot is intended for specific use of answering the questions based on audit reports published by OAG, for any use beyond this scope we have no liability to response provided by chatbot.
- We do not guarantee the accuracy, reliability, or completeness of any information provided by the chatbot and disclaim any liability or responsibility for actions taken based on its responses.
- The chatbot may occasionally provide inaccurate or inappropriate responses, and it is important to exercise judgment and critical thinking when interpreting its output.
- The chatbot responses should not be considered professional or authoritative advice and are generated based on patterns in the data it has been trained on.
- The chatbot's responses do not reflect the opinions or policies of our organization or its affiliates.
- Any personal or sensitive information shared with the chatbot is at the user's own risk, and we cannot guarantee complete privacy or confidentiality.
- the chatbot is not deterministic, so there might be change in answer to same question when asked by different users or multiple times.
- By using this chatbot, you agree to these terms and acknowledge that you are solely responsible for any reliance on or actions taken based on its responses.
- **This is just a prototype and being tested and worked upon, so its not perfect and may sometimes give irrelevant answers**. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.
""")
# using event listeners for 1. query box 2. click on example question
# https://www.gradio.app/docs/gradio/textbox#event-listeners-arguments
(textbox
.submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
.then(chat, [textbox,chatbot, dropdown_sources,dropdown_reports,dropdown_category,dropdown_year], [chatbot,sources_textbox],concurrency_limit = 8,api_name = "chat_textbox")
.then(finish_chat, None, [textbox],api_name = "finish_chat_textbox"))
(examples_hidden
.change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
.then(chat, [examples_hidden,chatbot, dropdown_sources,dropdown_reports,dropdown_category,dropdown_year], [chatbot,sources_textbox],concurrency_limit = 8,api_name = "chat_examples")
.then(finish_chat, None, [textbox],api_name = "finish_chat_examples")
)
demo.queue()
demo.launch() |