Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 22,674 Bytes
e2badc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import gradio as gr
import pandas as pd
import logging
import asyncio
import os
from uuid import uuid4
from datetime import datetime
from pathlib import Path
from huggingface_hub import CommitScheduler
from auditqa.sample_questions import QUESTIONS
from auditqa.reports import files, report_list, new_files, new_report_list
from auditqa.process_chunks import load_chunks, getconfig, get_local_qdrant, load_new_chunks
from auditqa.retriever import get_context
from auditqa.reader import nvidia_client, dedicated_endpoint
from auditqa.utils import make_html_source, parse_output_llm_with_sources, save_logs, get_message_template
from dotenv import load_dotenv
load_dotenv()
# fetch tokens and model config params
SPACES_LOG = os.environ["SPACES_LOG"]
model_config = getconfig("model_params.cfg")
# create the local logs repo
JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"logs-{uuid4()}.json"
# the logs are written to dataset repo periodically from local logs
# https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
scheduler = CommitScheduler(
repo_id="GIZ/spaces_logs",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="audit_chatbot",
token=SPACES_LOG )
#####--------------- VECTOR STORE -------------------------------------------------
# reports contain the already created chunks from Markdown version of pdf reports
# document processing was done using : https://github.com/axa-group/Parsr
# We need to create the local vectorstore collection once using load_chunks
# vectorestore colection are stored on persistent storage so this needs to be run only once
# hence, comment out line below when creating for first time
#vectorstores = load_new_chunks()
# once the vectore embeddings are created we will use qdrant client to access these
vectorstores = get_local_qdrant()
#####---------------------CHAT-----------------------------------------------------
def start_chat(query,history):
history = history + [(query,None)]
history = [tuple(x) for x in history]
return (gr.update(interactive = False),gr.update(selected=1),history)
def finish_chat():
return (gr.update(interactive = True,value = ""))
async def chat(query,history,sources,reports,subtype,year):
"""taking a query and a message history, use a pipeline (reformulation, retriever, answering)
to yield a tuple of:(messages in gradio format/messages in langchain format, source documents)
"""
print(f">> NEW QUESTION : {query}")
print(f"history:{history}")
print(f"sources:{sources}")
print(f"reports:{reports}")
print(f"subtype:{subtype}")
print(f"year:{year}")
docs_html = ""
output_query = ""
##------------------------fetch collection from vectorstore------------------------------
vectorstore = vectorstores["allreports"]
##------------------------------get context----------------------------------------------
context_retrieved = get_context(vectorstore=vectorstore,query=query,reports=reports,
sources=sources,subtype=subtype,year=year)
context_retrieved_formatted = "||".join(doc.page_content for doc in context_retrieved)
context_retrieved_lst = [doc.page_content for doc in context_retrieved]
##------------------- -------------Define Prompt-------------------------------------------
SYSTEM_PROMPT = """
You are AuditQ&A, an AI Assistant created by Auditors and Data Scientist. \
You are given a question and extracted passages of the consolidated/departmental/thematic focus audit reports.\
Provide a clear and structured answer based on the passages/context provided and the guidelines.
Guidelines:
- Passeges are provided as comma separated list of strings
- If the passages have useful facts or numbers, use them in your answer.
- When you use information from a passage, mention where it came from by using [Doc i] at the end of the sentence. i stands for the number of the document.
- Do not use the sentence 'Doc i says ...' to say where information came from.
- If the same thing is said in more than one document, you can mention all of them like this: [Doc i, Doc j, Doc k]
- Do not just summarize each passage one by one. Group your summaries to highlight the key parts in the explanation.
- If it makes sense, use bullet points and lists to make your answers easier to understand.
- You do not need to use every passage. Only use the ones that help answer the question.
- If the documents do not have the information needed to answer the question, just say you do not have enough information.
"""
USER_PROMPT = """Passages:
{context}
-----------------------
Question: {question} - Explained to audit expert
Answer in english with the passages citations:
""".format(context = context_retrieved_lst, question=query)
##-------------------- apply message template ------------------------------
messages = get_message_template(model_config.get('reader','TYPE'),SYSTEM_PROMPT,USER_PROMPT)
## -----------------Prepare HTML for displaying source documents --------------
docs_html = []
for i, d in enumerate(context_retrieved, 1):
docs_html.append(make_html_source(d, i))
docs_html = "".join(docs_html)
##-----------------------get answer from endpoints------------------------------
answer_yet = ""
if model_config.get('reader','TYPE') == 'NVIDIA':
chat_model = nvidia_client()
async def process_stream():
nonlocal answer_yet # Use the outer scope's answer_yet variable
# Without nonlocal, Python would create a new local variable answer_yet inside process_stream(),
# instead of modifying the one from the outer scope.
# Iterate over the streaming response chunks
response = chat_model.chat_completion(
model=model_config.get("reader","NVIDIA_MODEL"),
messages=messages,
stream=True,
max_tokens=int(model_config.get('reader','MAX_TOKENS')),
)
for message in response:
token = message.choices[0].delta.content
if token:
answer_yet += token
parsed_answer = parse_output_llm_with_sources(answer_yet)
history[-1] = (query, parsed_answer)
yield [tuple(x) for x in history], docs_html
# Stream the response updates
async for update in process_stream():
yield update
else:
chat_model = dedicated_endpoint()
async def process_stream():
# Without nonlocal, Python would create a new local variable answer_yet inside process_stream(),
# instead of modifying the one from the outer scope.
nonlocal answer_yet # Use the outer scope's answer_yet variable
# Iterate over the streaming response chunks
async for chunk in chat_model.astream(messages):
token = chunk.content
answer_yet += token
parsed_answer = parse_output_llm_with_sources(answer_yet)
history[-1] = (query, parsed_answer)
yield [tuple(x) for x in history], docs_html
# Stream the response updates
async for update in process_stream():
yield update
# logging the event
try:
timestamp = str(datetime.now().timestamp())
logs = {
"system_prompt": SYSTEM_PROMPT,
"sources":sources,
"reports":reports,
"subtype":subtype,
"year":year,
"question":query,
"sources":sources,
"retriever":model_config.get('retriever','MODEL'),
"endpoint_type":model_config.get('reader','TYPE'),
"raeder":model_config.get('reader','NVIDIA_MODEL'),
"docs":[doc.page_content for doc in context_retrieved],
"answer": history[-1][1],
"time": timestamp,
}
save_logs(scheduler,JSON_DATASET_PATH,logs)
except Exception as e:
logging.error(e)
#####-------------------------- Gradio App--------------------------------------####
# Set up Gradio Theme
theme = gr.themes.Base(
primary_hue="blue",
secondary_hue="red",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
text_size = gr.themes.utils.sizes.text_sm,
)
init_prompt = """
Hello, I am Audit Q&A, a conversational assistant designed to help you understand audit Reports. I will answer your questions by using **Audit reports publishsed by Auditor General Office**.
💡 How to use (tabs on right)
- **Reports**: You can choose to address your question to either specific report or a collection of report like District or Ministry focused reports. \
If you dont select any then the Consolidated report is relied upon to answer your question.
- **Examples**: We have curated some example questions,select a particular question from category of questions.
- **Sources**: This tab will display the relied upon paragraphs from the report, to help you in assessing or fact checking if the answer provided by Audit Q&A assitant is correct or not.
⚠️ For limitations of the tool please check **Disclaimer** tab.
"""
with gr.Blocks(title="Audit Q&A", css= "style.css", theme=theme,elem_id = "main-component") as demo:
#----------------------------------------------------------------------------------------------
# main tab where chat interaction happens
# ---------------------------------------------------------------------------------------------
with gr.Tab("AuditQ&A"):
with gr.Row(elem_id="chatbot-row"):
# chatbot output screen
with gr.Column(scale=2):
chatbot = gr.Chatbot(
value=[(None,init_prompt)],
show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",
avatar_images = (None,"data-collection.png"),
)
with gr.Row(elem_id = "input-message"):
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,
lines = 1,interactive = True,elem_id="input-textbox")
# second column with playground area for user to select values
with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):
# creating tabs on right panel
with gr.Tabs() as tabs:
#---------------- tab for REPORTS SELECTION ----------------------
with gr.Tab("Reports",elem_id = "tab-config",id = 2):
gr.Markdown("Reminder: To get better results select the specific report/reports")
#----- First level filter for selecting Report source/category ----------
dropdown_sources = gr.Dropdown(
["Consolidated","Ministry, Department, Agency and Projects","Local Government","Value for Money","Thematic"],
label="Select Report Category",
value="Consolidated",
interactive=True,
)
#------ second level filter for selecting subtype within the report category selected above
dropdown_category = gr.Dropdown(
new_files["Consolidated"],
value = new_files["Consolidated"],
label = "Filter for Sub-Type",
interactive=True)
#----------- update the secodn level filter abse don values from first level ----------------
def rs_change(rs):
return gr.update(choices=new_files[rs], value=new_files[rs])
dropdown_sources.change(fn=rs_change, inputs=[dropdown_sources], outputs=[dropdown_category])
#--------- Select the years for reports -------------------------------------
dropdown_year = gr.Dropdown(
['2018','2019','2020','2021','2022','2023'],
label="Filter for year",
multiselect=True,
value=['2023'],
interactive=True,
)
gr.Markdown("-------------------------------------------------------------------------")
#---------------- Another way to select reports across category and sub-type ------------
dropdown_reports = gr.Dropdown(
new_report_list,
label="Or select specific reports",
multiselect=True,
value=[],
interactive=True,)
############### tab for Question selection ###############
with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
examples_hidden = gr.Textbox(visible = False)
# getting defualt key value to display
first_key = list(QUESTIONS.keys())[0]
# create the question category dropdown
dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,
interactive = True,show_label = True,
label = "Select a category of sample questions",
elem_id = "dropdown-samples")
# iterate through the questions list
samples = []
for i,key in enumerate(QUESTIONS.keys()):
examples_visible = True if i == 0 else False
with gr.Row(visible = examples_visible) as group_examples:
examples_questions = gr.Examples(
QUESTIONS[key],
[examples_hidden],
examples_per_page=8,
run_on_click=False,
elem_id=f"examples{i}",
api_name=f"examples{i}",
# label = "Click on the example question or enter your own",
# cache_examples=True,
)
samples.append(group_examples)
##------------------- tab for Sources reporting ##------------------
with gr.Tab("Sources",elem_id = "tab-citations",id = 1):
sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
docs_textbox = gr.State("")
def change_sample_questions(key):
# update the questions list based on key selected
index = list(QUESTIONS.keys()).index(key)
visible_bools = [False] * len(samples)
visible_bools[index] = True
return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]
dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
# static tab 'about us'
with gr.Tab("About",elem_classes = "max-height other-tabs"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""The <ins>[**Office of the Auditor General (OAG)**](https://www.oag.go.ug/welcome)</ins> in Uganda, \
consistent with the mandate of Supreme Audit Institutions (SAIs),\
remains integral in ensuring transparency and fiscal responsibility.\
Regularly, the OAG submits comprehensive audit reports to Parliament, \
which serve as instrumental references for both policymakers and the public, \
facilitating informed decisions regarding public expenditure.
However, the prevalent underutilization of these audit reports, \
leading to numerous unimplemented recommendations, has posed significant challenges\
to the effectiveness and impact of the OAG's operations. The audit reports made available \
to the public have not been effectively used by them and other relevant stakeholders. \
The current format of the audit reports is considered a challenge to the \
stakeholders' accessibility and usability. This in one way constrains transparency \
and accountability in the utilization of public funds and effective service delivery.
In the face of this, modern advancements in Artificial Intelligence (AI),\
particularly Retrieval Augmented Generation (RAG) technology, \
emerge as a promising solution. By harnessing the capabilities of such AI tools, \
there is an opportunity not only to improve the accessibility and understanding \
of these audit reports but also to ensure that their insights are effectively \
translated into actionable outcomes, thereby reinforcing public transparency \
and service delivery in Uganda.
To address these issues, the OAG has initiated several projects, \
such as the Audit Recommendation Tracking (ART) System and the Citizens Feedback Platform (CFP). \
These systems are designed to increase the transparency and relevance of audit activities. \
However, despite these efforts, engagement and awareness of the audit findings remain low, \
and the complexity of the information often hinders effective public utilization. Recognizing the need for further\
enhancement in how audit reports are processed and understood, \
the **Civil Society and Budget Advocacy Group (CSBAG)** in partnership with the **GIZ**, \
has recognizing the need for further enhancement in how audit reports are processed and understood.
This prototype tool leveraging AI (Artificial Intelligence) aims at offering critical capabilities such as '
summarizing complex texts, extracting thematic insights, and enabling interactive, \
user-friendly analysis through a chatbot interface. By making the audit reports more accessible,\
this aims to increase readership and utilization among stakeholders, \
which can lead to better accountability and improve service delivery
""")
# static tab for disclaimer
with gr.Tab("Disclaimer",elem_classes = "max-height other-tabs"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
- This chatbot is intended for specific use of answering the questions based on audit reports published by OAG, for any use beyond this scope we have no liability to response provided by chatbot.
- We do not guarantee the accuracy, reliability, or completeness of any information provided by the chatbot and disclaim any liability or responsibility for actions taken based on its responses.
- The chatbot may occasionally provide inaccurate or inappropriate responses, and it is important to exercise judgment and critical thinking when interpreting its output.
- The chatbot responses should not be considered professional or authoritative advice and are generated based on patterns in the data it has been trained on.
- The chatbot's responses do not reflect the opinions or policies of our organization or its affiliates.
- Any personal or sensitive information shared with the chatbot is at the user's own risk, and we cannot guarantee complete privacy or confidentiality.
- the chatbot is not deterministic, so there might be change in answer to same question when asked by different users or multiple times.
- By using this chatbot, you agree to these terms and acknowledge that you are solely responsible for any reliance on or actions taken based on its responses.
- **This is just a prototype and being tested and worked upon, so its not perfect and may sometimes give irrelevant answers**. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.
""")
# using event listeners for 1. query box 2. click on example question
# https://www.gradio.app/docs/gradio/textbox#event-listeners-arguments
(textbox
.submit(start_chat, [textbox, chatbot], [textbox, tabs, chatbot], queue=False, api_name="start_chat_textbox")
# queue must be set as False (default) so the process is not waiting for another to be finished
.then(chat, [textbox, chatbot, dropdown_sources, dropdown_reports, dropdown_category, dropdown_year], [chatbot, sources_textbox], queue=True, concurrency_limit=8, api_name="chat_textbox")
.then(finish_chat, None, [textbox], api_name="finish_chat_textbox"))
(examples_hidden
.change(start_chat, [examples_hidden, chatbot], [textbox, tabs, chatbot], queue=False, api_name="start_chat_examples")
# queue must be set as False (default) so the process is not waiting for another to be finished
.then(chat, [examples_hidden, chatbot, dropdown_sources, dropdown_reports, dropdown_category, dropdown_year], [chatbot, sources_textbox], concurrency_limit=8, api_name="chat_examples")
.then(finish_chat, None, [textbox], api_name="finish_chat_examples")
)
demo.queue()
demo.launch() |