audit_assistant / auditqa /engine /vectorstore.py
ppsingh's picture
Create vectorstore.py
2cc8ae2 verified
raw
history blame
1.1 kB
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
from dotenv import load_dotenv
provider_retrieval_model = "HF"
embeddingmodel = "BAAI/bge-small-en-v1.5"
load_dotenv()
HF_Token = os.environ.get("HF_TOKEN")
client_path = f"./vectorstore"
collection_name = f"collection"
if provider_retrieval_model == "HF":
qdrantClient = QdrantClient(path=client_path, prefer_grpc=True)
embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key=HF_Token, model_name=embeddingmodel
)
dim = 1024
elif provider_retrieval_model == "OAI":
qdrantClient = QdrantClient(path=client_path, prefer_grpc=True)
embeddings = OpenAIEmbeddings(
model="text-embedding-ada-002",
openai_api_key=os.getenv("OPENAI_API_KEY"),
)
dim = 1536
qdrantClient.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
)
vectorstore = Qdrant(
client=qdrantClient,
collection_name=collection_name,
embeddings=embeddings,
)
vectorstore.add_documents(docs_samp)