audit_assistant / auditqa /doc_process.py
ppsingh's picture
Update auditqa/doc_process.py
eb583c3 verified
raw
history blame
1.92 kB
import glob
import os
from langchain_text_splitters import MarkdownHeaderTextSplitter
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter, SentenceTransformersTokenTextSplitter
from transformers import AutoTokenizer
from langchain.document_loaders import PyMuPDFLoader
path_to_data = "./data/"
def process_markdown():
headers_to_split_on = [
("#", "Header 1"),
("##", "Header 2"),
("###", "Header 3"),
("####", "Header 4"),
("#####", "Header 5")
]
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
files = glob.glob(path_to_data+"*.md")
print(files)
docs = []
for file in files:
try:
with open(file) as f:
docs.append(f.read())
except Exception as e:
print("Exception: ", e)
docs_processed = [markdown_splitter.split_text(doc) for doc in docs]
print(len(docs_processed))
print(docs_processed[0])
def process_pdf():
files = glob.glob(path_to_data+"*.pdf")
docs = []
for file in files:
try:
docs.append(PyMuPDFLoader(file).load())
except Exception as e:
print("Exception: ", e)
chunk_size = 256
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
AutoTokenizer.from_pretrained("BAAI/bge-small-en-v1.5"),
chunk_size=chunk_size,
chunk_overlap=int(chunk_size / 10),
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n", ".", " ", ""],
)
docs_processed = [text_splitter.split_documents(doc) for doc in docs]
docs_processed = [item for sublist in docs_processed for item in sublist]
print("length of text chunks:",len(docs_processed))
return docs_processed