Spaces:
Runtime error
Runtime error
import glob | |
import os | |
from langchain.text_splitter import RecursiveCharacterTextSplitter, SentenceTransformersTokenTextSplitter | |
from transformers import AutoTokenizer | |
from torch import cuda | |
from langchain_community.document_loaders import PyMuPDFLoader | |
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings | |
from langchain_community.vectorstores import Qdrant | |
from qdrant_client import QdrantClient | |
from auditqa.reports import files, report_list | |
device = 'cuda' if cuda.is_available() else 'cpu' | |
# path to the pdf files | |
path_to_data = "./data/pdf/" | |
def process_pdf(): | |
""" | |
this method reads through the files and report_list to create the vector database | |
""" | |
# load all the files using PyMuPDFfLoader | |
docs = {} | |
for file in report_list: | |
try: | |
docs[file] = PyMuPDFLoader(path_to_data + file + '.pdf').load() | |
except Exception as e: | |
print("Exception: ", e) | |
# text splitter based on the tokenizer of a model of your choosing | |
# to make texts fit exactly a transformer's context window size | |
# langchain text splitters: https://python.langchain.com/docs/modules/data_connection/document_transformers/ | |
chunk_size = 256 | |
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer( | |
AutoTokenizer.from_pretrained("BAAI/bge-large-en-v1.5"), | |
chunk_size=chunk_size, | |
chunk_overlap=10, | |
add_start_index=True, | |
strip_whitespace=True, | |
separators=["\n\n", "\n"], | |
) | |
# we iterate through the files which contain information about its | |
# 'source'=='category', 'subtype', these are used in UI for document selection | |
# which will be used later for filtering database | |
all_documents = {} | |
categories = list(files.keys()) | |
# iterate through 'source' | |
for category in categories: | |
print("documents splitting in source:",category) | |
all_documents[category] = [] | |
subtypes = list(files[category].keys()) | |
# iterate through 'subtype' within the source | |
# example source/category == 'District', has subtypes which is district names | |
for subtype in subtypes: | |
print("document splitting for subtype:",subtype) | |
for file in files[category][subtype]: | |
# create the chunks | |
doc_processed = text_splitter.split_documents(docs[file]) | |
print("chunks in subtype:",subtype, "are:",len(doc_processed)) | |
# add metadata information | |
for doc in doc_processed: | |
doc.metadata["source"] = category | |
doc.metadata["subtype"] = subtype | |
doc.metadata["year"] = file[-4:] | |
doc.metadata["filename"] = file | |
all_documents[category].append(doc_processed) | |
# convert list of list to flat list | |
for key, docs_processed in all_documents.items(): | |
docs_processed = [item for sublist in docs_processed for item in sublist] | |
print("length of chunks in source:",key, "are:",len(docs_processed)) | |
all_documents[key] = docs_processed | |
all_documents['allreports'] = [sublist for key,sublist in all_documents.items()] | |
all_documents['allreports'] = [item for sublist in all_documents['allreports'] for item in sublist] | |
# define embedding model | |
embeddings = HuggingFaceEmbeddings( | |
model_kwargs = {'device': device}, | |
encode_kwargs = {'normalize_embeddings': True}, | |
model_name="BAAI/bge-large-en-v1.5" | |
) | |
# placeholder for collection | |
qdrant_collections = {} | |
for file,value in all_documents.items(): | |
if file == "allreports": | |
print("emebddings for:",file) | |
qdrant_collections[file] = Qdrant.from_documents( | |
value, | |
embeddings, | |
location=":memory:", | |
collection_name=file, | |
) | |
print(qdrant_collections) | |
print("vector embeddings done") | |
return qdrant_collections | |
def get_local_qdrant(): | |
qdrant_collections = {} | |
embeddings = HuggingFaceEmbeddings( | |
model_kwargs = {'device': device}, | |
encode_kwargs = {'normalize_embeddings': True}, | |
model_name="BAAI/bge-en-icl") | |
list_ = ['Consolidated','District','Ministry','allreports'] | |
for val in list_: | |
client = QdrantClient(path=f"./data/{val}") | |
print(client.get_collections()) | |
qdrant_collections[val] = Qdrant(client=client, collection_name=val, embeddings=embeddings, ) | |
return qdrant_collections | |