Spaces:
Running
on
T4
Running
on
T4
Update auditqa/process_chunks.py
Browse files- auditqa/process_chunks.py +15 -6
auditqa/process_chunks.py
CHANGED
@@ -67,12 +67,21 @@ def load_chunks():
|
|
67 |
# placeholder for collection
|
68 |
qdrant_collections = {}
|
69 |
print("embeddings started")
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
print(qdrant_collections)
|
77 |
print("vector embeddings done")
|
78 |
return qdrant_collections
|
|
|
67 |
# placeholder for collection
|
68 |
qdrant_collections = {}
|
69 |
print("embeddings started")
|
70 |
+
batch_size = 10000 # Adjust this value based on your system's memory capacity
|
71 |
+
for i in range(0, len(docs), batch_size):
|
72 |
+
batch_docs = chunks_list[i:i+batch_size]
|
73 |
+
qdrant = Qdrant.from_documents(
|
74 |
+
batch_docs, embeddings,
|
75 |
+
path="/data/local_qdrant",
|
76 |
+
collection_name='reportsFeb2025',
|
77 |
+
)
|
78 |
+
|
79 |
+
#qdrant_collections['reportsFeb2025'] = Qdrant.from_documents(
|
80 |
+
# chunks_list,
|
81 |
+
# embeddings,
|
82 |
+
# path="/data/local_qdrant",
|
83 |
+
# collection_name='reportsFeb2025',
|
84 |
+
# )
|
85 |
print(qdrant_collections)
|
86 |
print("vector embeddings done")
|
87 |
return qdrant_collections
|