Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload app.py
Browse filesTried to add live streaming of an answers
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import logging
|
|
|
4 |
import os
|
5 |
import re
|
6 |
import json
|
@@ -14,6 +15,7 @@ from langchain.schema import (
|
|
14 |
HumanMessage,
|
15 |
SystemMessage,
|
16 |
)
|
|
|
17 |
from langchain_community.llms import HuggingFaceEndpoint
|
18 |
from auditqa.process_chunks import load_chunks, getconfig
|
19 |
from langchain_community.chat_models.huggingface import ChatHuggingFace
|
@@ -215,36 +217,69 @@ async def chat(query,history,sources,reports,subtype,year):
|
|
215 |
|
216 |
##-----------------------getting inference endpoints------------------------------
|
217 |
|
218 |
-
|
|
|
219 |
llm_qa = HuggingFaceEndpoint(
|
220 |
-
endpoint_url=
|
221 |
max_new_tokens=512,
|
222 |
repetition_penalty=1.03,
|
223 |
timeout=70,
|
224 |
-
huggingfacehub_api_token=HF_token,
|
|
|
|
|
|
|
225 |
|
226 |
-
# create RAG
|
227 |
chat_model = ChatHuggingFace(llm=llm_qa)
|
228 |
-
|
229 |
-
##-------------------------- get answers ---------------------------------------
|
230 |
-
answer_lst = []
|
231 |
-
for question, context in zip(question_lst , context_retrieved_lst):
|
232 |
-
answer = chat_model.invoke(messages)
|
233 |
-
answer_lst.append(answer.content)
|
234 |
docs_html = []
|
235 |
for i, d in enumerate(context_retrieved, 1):
|
236 |
docs_html.append(make_html_source(d, i))
|
237 |
docs_html = "".join(docs_html)
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
-
yield history,docs_html
|
248 |
|
249 |
# logging the event
|
250 |
try:
|
@@ -472,14 +507,14 @@ with gr.Blocks(title="Audit Q&A", css= "style.css", theme=theme,elem_id = "main-
|
|
472 |
# using event listeners for 1. query box 2. click on example question
|
473 |
# https://www.gradio.app/docs/gradio/textbox#event-listeners-arguments
|
474 |
(textbox
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
|
479 |
(examples_hidden
|
480 |
-
.change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue
|
481 |
-
.then(chat, [examples_hidden,chatbot, dropdown_sources,dropdown_reports,dropdown_category,dropdown_year], [chatbot,sources_textbox],concurrency_limit
|
482 |
-
.then(finish_chat, None, [textbox],api_name
|
483 |
)
|
484 |
|
485 |
demo.queue()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import logging
|
4 |
+
import asyncio
|
5 |
import os
|
6 |
import re
|
7 |
import json
|
|
|
15 |
HumanMessage,
|
16 |
SystemMessage,
|
17 |
)
|
18 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
19 |
from langchain_community.llms import HuggingFaceEndpoint
|
20 |
from auditqa.process_chunks import load_chunks, getconfig
|
21 |
from langchain_community.chat_models.huggingface import ChatHuggingFace
|
|
|
217 |
|
218 |
##-----------------------getting inference endpoints------------------------------
|
219 |
|
220 |
+
callback = StreamingStdOutCallbackHandler()
|
221 |
+
|
222 |
llm_qa = HuggingFaceEndpoint(
|
223 |
+
endpoint_url=model_config.get('reader', 'ENDPOINT'),
|
224 |
max_new_tokens=512,
|
225 |
repetition_penalty=1.03,
|
226 |
timeout=70,
|
227 |
+
huggingfacehub_api_token=HF_token,
|
228 |
+
streaming=True,
|
229 |
+
callbacks=[callback]
|
230 |
+
)
|
231 |
|
|
|
232 |
chat_model = ChatHuggingFace(llm=llm_qa)
|
233 |
+
|
|
|
|
|
|
|
|
|
|
|
234 |
docs_html = []
|
235 |
for i, d in enumerate(context_retrieved, 1):
|
236 |
docs_html.append(make_html_source(d, i))
|
237 |
docs_html = "".join(docs_html)
|
238 |
|
239 |
+
answer_yet = ""
|
240 |
+
|
241 |
+
async def process_stream():
|
242 |
+
nonlocal answer_yet
|
243 |
+
async for chunk in chat_model.astream(messages):
|
244 |
+
token = chunk.content
|
245 |
+
answer_yet += token
|
246 |
+
parsed_answer = parse_output_llm_with_sources(answer_yet)
|
247 |
+
history[-1] = (query, parsed_answer)
|
248 |
+
yield [tuple(x) for x in history], docs_html
|
249 |
+
|
250 |
+
async for update in process_stream():
|
251 |
+
yield update
|
252 |
+
|
253 |
+
# #callbacks = [StreamingStdOutCallbackHandler()]
|
254 |
+
# llm_qa = HuggingFaceEndpoint(
|
255 |
+
# endpoint_url= model_config.get('reader','ENDPOINT'),
|
256 |
+
# max_new_tokens=512,
|
257 |
+
# repetition_penalty=1.03,
|
258 |
+
# timeout=70,
|
259 |
+
# huggingfacehub_api_token=HF_token,)
|
260 |
+
|
261 |
+
# # create RAG
|
262 |
+
# chat_model = ChatHuggingFace(llm=llm_qa)
|
263 |
|
264 |
+
# ##-------------------------- get answers ---------------------------------------
|
265 |
+
# answer_lst = []
|
266 |
+
# for question, context in zip(question_lst , context_retrieved_lst):
|
267 |
+
# answer = chat_model.invoke(messages)
|
268 |
+
# answer_lst.append(answer.content)
|
269 |
+
# docs_html = []
|
270 |
+
# for i, d in enumerate(context_retrieved, 1):
|
271 |
+
# docs_html.append(make_html_source(d, i))
|
272 |
+
# docs_html = "".join(docs_html)
|
273 |
+
|
274 |
+
# previous_answer = history[-1][1]
|
275 |
+
# previous_answer = previous_answer if previous_answer is not None else ""
|
276 |
+
# answer_yet = previous_answer + answer_lst[0]
|
277 |
+
# answer_yet = parse_output_llm_with_sources(answer_yet)
|
278 |
+
# history[-1] = (query,answer_yet)
|
279 |
+
|
280 |
+
# history = [tuple(x) for x in history]
|
281 |
|
282 |
+
# yield history,docs_html
|
283 |
|
284 |
# logging the event
|
285 |
try:
|
|
|
507 |
# using event listeners for 1. query box 2. click on example question
|
508 |
# https://www.gradio.app/docs/gradio/textbox#event-listeners-arguments
|
509 |
(textbox
|
510 |
+
.submit(start_chat, [textbox, chatbot], [textbox, tabs, chatbot], queue=False, api_name="start_chat_textbox")
|
511 |
+
.then(chat, [textbox, chatbot, dropdown_sources, dropdown_reports, dropdown_category, dropdown_year], [chatbot, sources_textbox], queue=True, concurrency_limit=8, api_name="chat_textbox")
|
512 |
+
.then(finish_chat, None, [textbox], api_name="finish_chat_textbox"))
|
513 |
|
514 |
(examples_hidden
|
515 |
+
.change(start_chat, [examples_hidden, chatbot], [textbox, tabs, chatbot], queue=False, api_name="start_chat_examples")
|
516 |
+
.then(chat, [examples_hidden, chatbot, dropdown_sources, dropdown_reports, dropdown_category, dropdown_year], [chatbot, sources_textbox], concurrency_limit=8, api_name="chat_examples")
|
517 |
+
.then(finish_chat, None, [textbox], api_name="finish_chat_examples")
|
518 |
)
|
519 |
|
520 |
demo.queue()
|