Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Create retriever.py
Browse files- auditqa/retriever.py +57 -0
auditqa/retriever.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from qdrant_client.http import models as rest
|
2 |
+
from auditqa.process_chunks import getconfig
|
3 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
4 |
+
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
5 |
+
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
6 |
+
import logging
|
7 |
+
|
8 |
+
model_config = getconfig("model_params.cfg")
|
9 |
+
|
10 |
+
def create_filter(reports:list = [],sources:str =None,
|
11 |
+
subtype:str =None,year:str =None):
|
12 |
+
if len(reports) == 0:
|
13 |
+
print("defining filter for:{}:{}:{}".format(sources,subtype,year))
|
14 |
+
filter=rest.Filter(
|
15 |
+
must=[rest.FieldCondition(
|
16 |
+
key="metadata.source",
|
17 |
+
match=rest.MatchValue(value=sources)
|
18 |
+
),
|
19 |
+
rest.FieldCondition(
|
20 |
+
key="metadata.subtype",
|
21 |
+
match=rest.MatchValue(value=subtype)
|
22 |
+
),
|
23 |
+
rest.FieldCondition(
|
24 |
+
key="metadata.year",
|
25 |
+
match=rest.MatchAny(any=year)
|
26 |
+
),])
|
27 |
+
else:
|
28 |
+
print("defining filter for allreports:",reports)
|
29 |
+
filter=rest.Filter(
|
30 |
+
must=[
|
31 |
+
rest.FieldCondition(
|
32 |
+
key="metadata.filename",
|
33 |
+
match=rest.MatchAny(any=reports)
|
34 |
+
)])
|
35 |
+
|
36 |
+
return filter
|
37 |
+
|
38 |
+
|
39 |
+
def get_context(vectorstore,query,reports,sources,subtype,year):
|
40 |
+
# create metadata filter
|
41 |
+
filter = create_filter(reports=reports,sources=sources,subtype=subtype,year=year)
|
42 |
+
|
43 |
+
# getting context
|
44 |
+
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold",
|
45 |
+
search_kwargs={"score_threshold": 0.6,
|
46 |
+
"k": int(model_config.get('retriever','TOP_K')),
|
47 |
+
"filter":filter})
|
48 |
+
# re-ranking the retrieved results
|
49 |
+
model = HuggingFaceCrossEncoder(model_name=model_config.get('ranker','MODEL'))
|
50 |
+
compressor = CrossEncoderReranker(model=model, top_n=int(model_config.get('ranker','TOP_K')))
|
51 |
+
compression_retriever = ContextualCompressionRetriever(
|
52 |
+
base_compressor=compressor, base_retriever=retriever
|
53 |
+
)
|
54 |
+
context_retrieved = compression_retriever.invoke(query)
|
55 |
+
print(f"retrieved paragraphs:{len(context_retrieved)}")
|
56 |
+
|
57 |
+
return context_retrieved
|