Spaces:
Running
on
T4
Running
on
T4
Update auditqa/process_chunks.py
Browse files- auditqa/process_chunks.py +13 -50
auditqa/process_chunks.py
CHANGED
@@ -49,48 +49,15 @@ def load_chunks():
|
|
49 |
# 'source'=='category', 'subtype', these are used in UI for document selection
|
50 |
# which will be used later for filtering database
|
51 |
config = getconfig("./model_params.cfg")
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
for subtype in subtypes:
|
62 |
-
print("document splitting for subtype:",subtype)
|
63 |
-
for file in files[category][subtype]:
|
64 |
-
|
65 |
-
# load the chunks
|
66 |
-
try:
|
67 |
-
doc_processed = open_file(path_to_data + file + "/"+ file+ ".chunks.json" )
|
68 |
-
|
69 |
-
|
70 |
-
except Exception as e:
|
71 |
-
print("Exception: ", e)
|
72 |
-
print("chunks in subtype:",subtype, "are:",len(doc_processed))
|
73 |
-
|
74 |
-
# add metadata information
|
75 |
-
chunks_list = []
|
76 |
-
for doc in doc_processed:
|
77 |
-
chunks_list.append(Document(page_content= doc['content'],
|
78 |
-
metadata={"source": category,
|
79 |
-
"subtype":subtype,
|
80 |
-
"year":file[-4:],
|
81 |
-
"filename":file,
|
82 |
-
"page":doc['metadata']['page'],
|
83 |
-
"headings":doc['metadata']['headings']}))
|
84 |
-
|
85 |
-
all_documents[category].append(chunks_list)
|
86 |
-
|
87 |
-
# convert list of list to flat list
|
88 |
-
for key, docs_processed in all_documents.items():
|
89 |
-
docs_processed = [item for sublist in docs_processed for item in sublist]
|
90 |
-
print("length of chunks in source:",key, "are:",len(docs_processed))
|
91 |
-
all_documents[key] = docs_processed
|
92 |
-
all_documents['allreports'] = [sublist for key,sublist in all_documents.items()]
|
93 |
-
all_documents['allreports'] = [item for sublist in all_documents['allreports'] for item in sublist]
|
94 |
# define embedding model
|
95 |
embeddings = HuggingFaceEmbeddings(
|
96 |
model_kwargs = {'device': device},
|
@@ -99,16 +66,12 @@ def load_chunks():
|
|
99 |
)
|
100 |
# placeholder for collection
|
101 |
qdrant_collections = {}
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
if file == "allreports":
|
106 |
-
print("emebddings for:",file)
|
107 |
-
qdrant_collections[file] = Qdrant.from_documents(
|
108 |
-
value,
|
109 |
embeddings,
|
110 |
path="/data/local_qdrant",
|
111 |
-
collection_name=
|
112 |
)
|
113 |
print(qdrant_collections)
|
114 |
print("vector embeddings done")
|
|
|
49 |
# 'source'=='category', 'subtype', these are used in UI for document selection
|
50 |
# which will be used later for filtering database
|
51 |
config = getconfig("./model_params.cfg")
|
52 |
+
|
53 |
+
doc_processed = open_file(path_to_data + "new_chunks.json" )
|
54 |
+
chunks_list = []
|
55 |
+
|
56 |
+
for doc in doc_processed:
|
57 |
+
chunks_list.append(Document(page_content= doc['content'],
|
58 |
+
metadata=doc['metadata']
|
59 |
+
))
|
60 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
# define embedding model
|
62 |
embeddings = HuggingFaceEmbeddings(
|
63 |
model_kwargs = {'device': device},
|
|
|
66 |
)
|
67 |
# placeholder for collection
|
68 |
qdrant_collections = {}
|
69 |
+
print("embeddings started")
|
70 |
+
qdrant_collections['reportsFeb2025'] = Qdrant.from_documents(
|
71 |
+
chunks_list,
|
|
|
|
|
|
|
|
|
72 |
embeddings,
|
73 |
path="/data/local_qdrant",
|
74 |
+
collection_name='reportsFeb2025',
|
75 |
)
|
76 |
print(qdrant_collections)
|
77 |
print("vector embeddings done")
|