ppsingh commited on
Commit
fba1e90
·
1 Parent(s): 6fd4eb8
Files changed (4) hide show
  1. app.py +378 -3
  2. app1.py +0 -398
  3. auditqa/process_chunks.py +1 -1
  4. auditqa/utils.py +4 -4
app.py CHANGED
@@ -16,8 +16,383 @@ from auditqa.utils import make_html_source, parse_output_llm_with_sources, save_
16
  from dotenv import load_dotenv
17
  load_dotenv()
18
 
 
 
 
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  vectorstores = get_local_qdrant()
21
- vectorstore = vectorstores['allreports']
22
- print(vectorstore)
23
- print(type(vectorstore))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  from dotenv import load_dotenv
17
  load_dotenv()
18
 
19
+ # fetch tokens and model config params
20
+ SPACES_LOG = os.environ["SPACES_LOG"]
21
+ model_config = getconfig("model_params.cfg")
22
 
23
+ # create the local logs repo
24
+ JSON_DATASET_DIR = Path("json_dataset")
25
+ JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
26
+ JSON_DATASET_PATH = JSON_DATASET_DIR / f"logs-{uuid4()}.json"
27
+
28
+ # the logs are written to dataset repo periodically from local logs
29
+ # https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
30
+ scheduler = CommitScheduler(
31
+ repo_id="GIZ/spaces_logs",
32
+ repo_type="dataset",
33
+ folder_path=JSON_DATASET_DIR,
34
+ path_in_repo="audit_chatbot",
35
+ token=SPACES_LOG )
36
+
37
+ #####--------------- VECTOR STORE -------------------------------------------------
38
+ # reports contain the already created chunks from Markdown version of pdf reports
39
+ # document processing was done using : https://github.com/axa-group/Parsr
40
+ # We need to create the local vectorstore collection once using load_chunks
41
+ # vectorestore colection are stored on persistent storage so this needs to be run only once
42
+ # hence, comment out line below when creating for first time
43
+ #vectorstores = load_new_chunks()
44
+ # once the vectore embeddings are created we will use qdrant client to access these
45
  vectorstores = get_local_qdrant()
46
+
47
+ #####---------------------CHAT-----------------------------------------------------
48
+ def start_chat(query,history):
49
+ history = history + [(query,None)]
50
+ history = [tuple(x) for x in history]
51
+ return (gr.update(interactive = False),gr.update(selected=1),history)
52
+
53
+ def finish_chat():
54
+ return (gr.update(interactive = True,value = ""))
55
+
56
+ async def chat(query,history,sources,reports,subtype,year):
57
+ """taking a query and a message history, use a pipeline (reformulation, retriever, answering)
58
+ to yield a tuple of:(messages in gradio format/messages in langchain format, source documents)
59
+ """
60
+
61
+ print(f">> NEW QUESTION : {query}")
62
+ print(f"history:{history}")
63
+ print(f"sources:{sources}")
64
+ print(f"reports:{reports}")
65
+ print(f"subtype:{subtype}")
66
+ print(f"year:{year}")
67
+ docs_html = ""
68
+ output_query = ""
69
+
70
+ ##------------------------fetch collection from vectorstore------------------------------
71
+ vectorstore = vectorstores["allreports"]
72
+
73
+ ##------------------------------get context----------------------------------------------
74
+ context_retrieved = get_context(vectorstore=vectorstore,query=query,reports=reports,
75
+ sources=sources,subtype=subtype,year=year)
76
+ context_retrieved_formatted = "||".join(doc.page_content for doc in context_retrieved)
77
+ context_retrieved_lst = [doc.page_content for doc in context_retrieved]
78
+
79
+ ##------------------- -------------Define Prompt-------------------------------------------
80
+ SYSTEM_PROMPT = """
81
+ You are AuditQ&A, an AI Assistant created by Auditors and Data Scientist. \
82
+ You are given a question and extracted passages of the consolidated/departmental/thematic focus audit reports.\
83
+ Provide a clear and structured answer based on the passages/context provided and the guidelines.
84
+ Guidelines:
85
+ - Passeges are provided as comma separated list of strings
86
+ - If the passages have useful facts or numbers, use them in your answer.
87
+ - When you use information from a passage, mention where it came from by using [Doc i] at the end of the sentence. i stands for the number of the document.
88
+ - Do not use the sentence 'Doc i says ...' to say where information came from.
89
+ - If the same thing is said in more than one document, you can mention all of them like this: [Doc i, Doc j, Doc k]
90
+ - Do not just summarize each passage one by one. Group your summaries to highlight the key parts in the explanation.
91
+ - If it makes sense, use bullet points and lists to make your answers easier to understand.
92
+ - You do not need to use every passage. Only use the ones that help answer the question.
93
+ - If the documents do not have the information needed to answer the question, just say you do not have enough information.
94
+ """
95
+
96
+ USER_PROMPT = """Passages:
97
+ {context}
98
+ -----------------------
99
+ Question: {question} - Explained to audit expert
100
+ Answer in english with the passages citations:
101
+ """.format(context = context_retrieved_lst, question=query)
102
+
103
+ ##-------------------- apply message template ------------------------------
104
+ messages = get_message_template(model_config.get('reader','TYPE'),SYSTEM_PROMPT,USER_PROMPT)
105
+
106
+ ## -----------------Prepare HTML for displaying source documents --------------
107
+ docs_html = []
108
+ for i, d in enumerate(context_retrieved, 1):
109
+ docs_html.append(make_html_source(d, i))
110
+ docs_html = "".join(docs_html)
111
+
112
+ ##-----------------------get answer from endpoints------------------------------
113
+ answer_yet = ""
114
+ if model_config.get('reader','TYPE') == 'NVIDIA':
115
+ chat_model = nvidia_client()
116
+ async def process_stream():
117
+ nonlocal answer_yet # Use the outer scope's answer_yet variable
118
+ # Without nonlocal, Python would create a new local variable answer_yet inside process_stream(),
119
+ # instead of modifying the one from the outer scope.
120
+ # Iterate over the streaming response chunks
121
+ response = chat_model.chat_completion(
122
+ model=model_config.get("reader","NVIDIA_MODEL"),
123
+ messages=messages,
124
+ stream=True,
125
+ max_tokens=int(model_config.get('reader','MAX_TOKENS')),
126
+ )
127
+ for message in response:
128
+ token = message.choices[0].delta.content
129
+ if token:
130
+ answer_yet += token
131
+ parsed_answer = parse_output_llm_with_sources(answer_yet)
132
+ history[-1] = (query, parsed_answer)
133
+ yield [tuple(x) for x in history], docs_html
134
+
135
+ # Stream the response updates
136
+ async for update in process_stream():
137
+ yield update
138
+
139
+ else:
140
+ chat_model = dedicated_endpoint()
141
+ async def process_stream():
142
+ # Without nonlocal, Python would create a new local variable answer_yet inside process_stream(),
143
+ # instead of modifying the one from the outer scope.
144
+ nonlocal answer_yet # Use the outer scope's answer_yet variable
145
+ # Iterate over the streaming response chunks
146
+ async for chunk in chat_model.astream(messages):
147
+ token = chunk.content
148
+ answer_yet += token
149
+ parsed_answer = parse_output_llm_with_sources(answer_yet)
150
+ history[-1] = (query, parsed_answer)
151
+ yield [tuple(x) for x in history], docs_html
152
+
153
+ # Stream the response updates
154
+ async for update in process_stream():
155
+ yield update
156
+
157
+ # logging the event
158
+ try:
159
+ timestamp = str(datetime.now().timestamp())
160
+ logs = {
161
+ "system_prompt": SYSTEM_PROMPT,
162
+ "sources":sources,
163
+ "reports":reports,
164
+ "subtype":subtype,
165
+ "year":year,
166
+ "question":query,
167
+ "sources":sources,
168
+ "retriever":model_config.get('retriever','MODEL'),
169
+ "endpoint_type":model_config.get('reader','TYPE'),
170
+ "raeder":model_config.get('reader','NVIDIA_MODEL'),
171
+ "docs":[doc.page_content for doc in context_retrieved],
172
+ "answer": history[-1][1],
173
+ "time": timestamp,
174
+ }
175
+ save_logs(scheduler,JSON_DATASET_PATH,logs)
176
+ except Exception as e:
177
+ logging.error(e)
178
+
179
+
180
+
181
+
182
+ #####-------------------------- Gradio App--------------------------------------####
183
+
184
+ # Set up Gradio Theme
185
+ theme = gr.themes.Base(
186
+ primary_hue="blue",
187
+ secondary_hue="red",
188
+ font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
189
+ text_size = gr.themes.utils.sizes.text_sm,
190
+ )
191
+
192
+ init_prompt = """
193
+ Hello, I am Audit Q&A, a conversational assistant designed to help you understand audit Reports. I will answer your questions by using **Audit reports publishsed by Auditor General Office**.
194
+ 💡 How to use (tabs on right)
195
+ - **Reports**: You can choose to address your question to either specific report or a collection of report like District or Ministry focused reports. \
196
+ If you dont select any then the Consolidated report is relied upon to answer your question.
197
+ - **Examples**: We have curated some example questions,select a particular question from category of questions.
198
+ - **Sources**: This tab will display the relied upon paragraphs from the report, to help you in assessing or fact checking if the answer provided by Audit Q&A assitant is correct or not.
199
+ ⚠️ For limitations of the tool please check **Disclaimer** tab.
200
+ """
201
+
202
+
203
+ with gr.Blocks(title="Audit Q&A", css= "style.css", theme=theme,elem_id = "main-component") as demo:
204
+ #----------------------------------------------------------------------------------------------
205
+ # main tab where chat interaction happens
206
+ # ---------------------------------------------------------------------------------------------
207
+ with gr.Tab("AuditQ&A"):
208
+
209
+ with gr.Row(elem_id="chatbot-row"):
210
+ # chatbot output screen
211
+ with gr.Column(scale=2):
212
+ chatbot = gr.Chatbot(
213
+ value=[(None,init_prompt)],
214
+ show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",
215
+ avatar_images = (None,"data-collection.png"),
216
+ )
217
+
218
+
219
+
220
+
221
+ with gr.Row(elem_id = "input-message"):
222
+ textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,
223
+ lines = 1,interactive = True,elem_id="input-textbox")
224
+
225
+ # second column with playground area for user to select values
226
+ with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):
227
+ # creating tabs on right panel
228
+ with gr.Tabs() as tabs:
229
+ #---------------- tab for REPORTS SELECTION ----------------------
230
+
231
+ with gr.Tab("Reports",elem_id = "tab-config",id = 2):
232
+ gr.Markdown("Reminder: To get better results select the specific report/reports")
233
+
234
+
235
+ #----- First level filter for selecting Report source/category ----------
236
+ dropdown_sources = gr.Dropdown(
237
+ ["Consolidated","Ministry, Department, Agency and Projects","Local Government","Value for Money","Thematic"],
238
+ label="Select Report Category",
239
+ value="Consolidated",
240
+ interactive=True,
241
+ )
242
+
243
+ #------ second level filter for selecting subtype within the report category selected above
244
+ dropdown_category = gr.Dropdown(
245
+ new_files["Consolidated"],
246
+ value = new_files["Consolidated"],
247
+ label = "Filter for Sub-Type",
248
+ interactive=True)
249
+
250
+ #----------- update the secodn level filter abse don values from first level ----------------
251
+ def rs_change(rs):
252
+ return gr.update(choices=new_files[rs], value=new_files[rs])
253
+ dropdown_sources.change(fn=rs_change, inputs=[dropdown_sources], outputs=[dropdown_category])
254
+
255
+ #--------- Select the years for reports -------------------------------------
256
+ dropdown_year = gr.Dropdown(
257
+ ['2018','2019','2020','2021','2022','2023'],
258
+ label="Filter for year",
259
+ multiselect=True,
260
+ value=['2023'],
261
+ interactive=True,
262
+ )
263
+ gr.Markdown("-------------------------------------------------------------------------")
264
+ #---------------- Another way to select reports across category and sub-type ------------
265
+ dropdown_reports = gr.Dropdown(
266
+ new_report_list,
267
+ label="Or select specific reports",
268
+ multiselect=True,
269
+ value=[],
270
+ interactive=True,)
271
+
272
+ ############### tab for Question selection ###############
273
+ with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
274
+ examples_hidden = gr.Textbox(visible = False)
275
+
276
+ # getting defualt key value to display
277
+ first_key = list(QUESTIONS.keys())[0]
278
+ # create the question category dropdown
279
+ dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,
280
+ interactive = True,show_label = True,
281
+ label = "Select a category of sample questions",
282
+ elem_id = "dropdown-samples")
283
+
284
+
285
+ # iterate through the questions list
286
+ samples = []
287
+ for i,key in enumerate(QUESTIONS.keys()):
288
+ examples_visible = True if i == 0 else False
289
+ with gr.Row(visible = examples_visible) as group_examples:
290
+ examples_questions = gr.Examples(
291
+ QUESTIONS[key],
292
+ [examples_hidden],
293
+ examples_per_page=8,
294
+ run_on_click=False,
295
+ elem_id=f"examples{i}",
296
+ api_name=f"examples{i}",
297
+ # label = "Click on the example question or enter your own",
298
+ # cache_examples=True,
299
+ )
300
+
301
+ samples.append(group_examples)
302
+ ##------------------- tab for Sources reporting ##------------------
303
+ with gr.Tab("Sources",elem_id = "tab-citations",id = 1):
304
+ sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
305
+ docs_textbox = gr.State("")
306
+
307
+ def change_sample_questions(key):
308
+ # update the questions list based on key selected
309
+ index = list(QUESTIONS.keys()).index(key)
310
+ visible_bools = [False] * len(samples)
311
+ visible_bools[index] = True
312
+ return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]
313
+
314
+ dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
315
+
316
+
317
+ # static tab 'about us'
318
+ with gr.Tab("About",elem_classes = "max-height other-tabs"):
319
+ with gr.Row():
320
+ with gr.Column(scale=1):
321
+ gr.Markdown("""The <ins>[**Office of the Auditor General (OAG)**](https://www.oag.go.ug/welcome)</ins> in Uganda, \
322
+ consistent with the mandate of Supreme Audit Institutions (SAIs),\
323
+ remains integral in ensuring transparency and fiscal responsibility.\
324
+ Regularly, the OAG submits comprehensive audit reports to Parliament, \
325
+ which serve as instrumental references for both policymakers and the public, \
326
+ facilitating informed decisions regarding public expenditure.
327
+
328
+ However, the prevalent underutilization of these audit reports, \
329
+ leading to numerous unimplemented recommendations, has posed significant challenges\
330
+ to the effectiveness and impact of the OAG's operations. The audit reports made available \
331
+ to the public have not been effectively used by them and other relevant stakeholders. \
332
+ The current format of the audit reports is considered a challenge to the \
333
+ stakeholders' accessibility and usability. This in one way constrains transparency \
334
+ and accountability in the utilization of public funds and effective service delivery.
335
+
336
+ In the face of this, modern advancements in Artificial Intelligence (AI),\
337
+ particularly Retrieval Augmented Generation (RAG) technology, \
338
+ emerge as a promising solution. By harnessing the capabilities of such AI tools, \
339
+ there is an opportunity not only to improve the accessibility and understanding \
340
+ of these audit reports but also to ensure that their insights are effectively \
341
+ translated into actionable outcomes, thereby reinforcing public transparency \
342
+ and service delivery in Uganda.
343
+
344
+ To address these issues, the OAG has initiated several projects, \
345
+ such as the Audit Recommendation Tracking (ART) System and the Citizens Feedback Platform (CFP). \
346
+ These systems are designed to increase the transparency and relevance of audit activities. \
347
+ However, despite these efforts, engagement and awareness of the audit findings remain low, \
348
+ and the complexity of the information often hinders effective public utilization. Recognizing the need for further\
349
+ enhancement in how audit reports are processed and understood, \
350
+ the **Civil Society and Budget Advocacy Group (CSBAG)** in partnership with the **GIZ**, \
351
+ has recognizing the need for further enhancement in how audit reports are processed and understood.
352
+
353
+ This prototype tool leveraging AI (Artificial Intelligence) aims at offering critical capabilities such as '
354
+ summarizing complex texts, extracting thematic insights, and enabling interactive, \
355
+ user-friendly analysis through a chatbot interface. By making the audit reports more accessible,\
356
+ this aims to increase readership and utilization among stakeholders, \
357
+ which can lead to better accountability and improve service delivery
358
+
359
+ """)
360
+
361
+
362
+ # static tab for disclaimer
363
+ with gr.Tab("Disclaimer",elem_classes = "max-height other-tabs"):
364
+ with gr.Row():
365
+ with gr.Column(scale=1):
366
+ gr.Markdown("""
367
+ - This chatbot is intended for specific use of answering the questions based on audit reports published by OAG, for any use beyond this scope we have no liability to response provided by chatbot.
368
+ - We do not guarantee the accuracy, reliability, or completeness of any information provided by the chatbot and disclaim any liability or responsibility for actions taken based on its responses.
369
+ - The chatbot may occasionally provide inaccurate or inappropriate responses, and it is important to exercise judgment and critical thinking when interpreting its output.
370
+ - The chatbot responses should not be considered professional or authoritative advice and are generated based on patterns in the data it has been trained on.
371
+ - The chatbot's responses do not reflect the opinions or policies of our organization or its affiliates.
372
+ - Any personal or sensitive information shared with the chatbot is at the user's own risk, and we cannot guarantee complete privacy or confidentiality.
373
+ - the chatbot is not deterministic, so there might be change in answer to same question when asked by different users or multiple times.
374
+ - By using this chatbot, you agree to these terms and acknowledge that you are solely responsible for any reliance on or actions taken based on its responses.
375
+ - **This is just a prototype and being tested and worked upon, so its not perfect and may sometimes give irrelevant answers**. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.
376
+ """)
377
+
378
+
379
+
380
+
381
+ # using event listeners for 1. query box 2. click on example question
382
+ # https://www.gradio.app/docs/gradio/textbox#event-listeners-arguments
383
+ (textbox
384
+ .submit(start_chat, [textbox, chatbot], [textbox, tabs, chatbot], queue=False, api_name="start_chat_textbox")
385
+ # queue must be set as False (default) so the process is not waiting for another to be finished
386
+ .then(chat, [textbox, chatbot, dropdown_sources, dropdown_reports, dropdown_category, dropdown_year], [chatbot, sources_textbox], queue=True, concurrency_limit=8, api_name="chat_textbox")
387
+ .then(finish_chat, None, [textbox], api_name="finish_chat_textbox"))
388
+
389
+ (examples_hidden
390
+ .change(start_chat, [examples_hidden, chatbot], [textbox, tabs, chatbot], queue=False, api_name="start_chat_examples")
391
+ # queue must be set as False (default) so the process is not waiting for another to be finished
392
+ .then(chat, [examples_hidden, chatbot, dropdown_sources, dropdown_reports, dropdown_category, dropdown_year], [chatbot, sources_textbox], concurrency_limit=8, api_name="chat_examples")
393
+ .then(finish_chat, None, [textbox], api_name="finish_chat_examples")
394
+ )
395
+
396
+ demo.queue()
397
+
398
+ demo.launch()
app1.py DELETED
@@ -1,398 +0,0 @@
1
- import gradio as gr
2
- import pandas as pd
3
- import logging
4
- import asyncio
5
- import os
6
- from uuid import uuid4
7
- from datetime import datetime
8
- from pathlib import Path
9
- from huggingface_hub import CommitScheduler
10
- from auditqa.sample_questions import QUESTIONS
11
- from auditqa.reports import files, report_list, new_files, new_report_list
12
- from auditqa.process_chunks import load_chunks, getconfig, get_local_qdrant, load_new_chunks
13
- from auditqa.retriever import get_context
14
- from auditqa.reader import nvidia_client, dedicated_endpoint
15
- from auditqa.utils import make_html_source, parse_output_llm_with_sources, save_logs, get_message_template
16
- from dotenv import load_dotenv
17
- load_dotenv()
18
-
19
- # fetch tokens and model config params
20
- SPACES_LOG = os.environ["SPACES_LOG"]
21
- model_config = getconfig("model_params.cfg")
22
-
23
- # create the local logs repo
24
- JSON_DATASET_DIR = Path("json_dataset")
25
- JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
26
- JSON_DATASET_PATH = JSON_DATASET_DIR / f"logs-{uuid4()}.json"
27
-
28
- # the logs are written to dataset repo periodically from local logs
29
- # https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
30
- scheduler = CommitScheduler(
31
- repo_id="GIZ/spaces_logs",
32
- repo_type="dataset",
33
- folder_path=JSON_DATASET_DIR,
34
- path_in_repo="audit_chatbot",
35
- token=SPACES_LOG )
36
-
37
- #####--------------- VECTOR STORE -------------------------------------------------
38
- # reports contain the already created chunks from Markdown version of pdf reports
39
- # document processing was done using : https://github.com/axa-group/Parsr
40
- # We need to create the local vectorstore collection once using load_chunks
41
- # vectorestore colection are stored on persistent storage so this needs to be run only once
42
- # hence, comment out line below when creating for first time
43
- #vectorstores = load_new_chunks()
44
- # once the vectore embeddings are created we will use qdrant client to access these
45
- vectorstores = get_local_qdrant()
46
-
47
- #####---------------------CHAT-----------------------------------------------------
48
- def start_chat(query,history):
49
- history = history + [(query,None)]
50
- history = [tuple(x) for x in history]
51
- return (gr.update(interactive = False),gr.update(selected=1),history)
52
-
53
- def finish_chat():
54
- return (gr.update(interactive = True,value = ""))
55
-
56
- async def chat(query,history,sources,reports,subtype,year):
57
- """taking a query and a message history, use a pipeline (reformulation, retriever, answering)
58
- to yield a tuple of:(messages in gradio format/messages in langchain format, source documents)
59
- """
60
-
61
- print(f">> NEW QUESTION : {query}")
62
- print(f"history:{history}")
63
- print(f"sources:{sources}")
64
- print(f"reports:{reports}")
65
- print(f"subtype:{subtype}")
66
- print(f"year:{year}")
67
- docs_html = ""
68
- output_query = ""
69
-
70
- ##------------------------fetch collection from vectorstore------------------------------
71
- vectorstore = vectorstores["allreports"]
72
-
73
- ##------------------------------get context----------------------------------------------
74
- context_retrieved = get_context(vectorstore=vectorstore,query=query,reports=reports,
75
- sources=sources,subtype=subtype,year=year)
76
- context_retrieved_formatted = "||".join(doc.page_content for doc in context_retrieved)
77
- context_retrieved_lst = [doc.page_content for doc in context_retrieved]
78
-
79
- ##------------------- -------------Define Prompt-------------------------------------------
80
- SYSTEM_PROMPT = """
81
- You are AuditQ&A, an AI Assistant created by Auditors and Data Scientist. \
82
- You are given a question and extracted passages of the consolidated/departmental/thematic focus audit reports.\
83
- Provide a clear and structured answer based on the passages/context provided and the guidelines.
84
- Guidelines:
85
- - Passeges are provided as comma separated list of strings
86
- - If the passages have useful facts or numbers, use them in your answer.
87
- - When you use information from a passage, mention where it came from by using [Doc i] at the end of the sentence. i stands for the number of the document.
88
- - Do not use the sentence 'Doc i says ...' to say where information came from.
89
- - If the same thing is said in more than one document, you can mention all of them like this: [Doc i, Doc j, Doc k]
90
- - Do not just summarize each passage one by one. Group your summaries to highlight the key parts in the explanation.
91
- - If it makes sense, use bullet points and lists to make your answers easier to understand.
92
- - You do not need to use every passage. Only use the ones that help answer the question.
93
- - If the documents do not have the information needed to answer the question, just say you do not have enough information.
94
- """
95
-
96
- USER_PROMPT = """Passages:
97
- {context}
98
- -----------------------
99
- Question: {question} - Explained to audit expert
100
- Answer in english with the passages citations:
101
- """.format(context = context_retrieved_lst, question=query)
102
-
103
- ##-------------------- apply message template ------------------------------
104
- messages = get_message_template(model_config.get('reader','TYPE'),SYSTEM_PROMPT,USER_PROMPT)
105
-
106
- ## -----------------Prepare HTML for displaying source documents --------------
107
- docs_html = []
108
- for i, d in enumerate(context_retrieved, 1):
109
- docs_html.append(make_html_source(d, i))
110
- docs_html = "".join(docs_html)
111
-
112
- ##-----------------------get answer from endpoints------------------------------
113
- answer_yet = ""
114
- if model_config.get('reader','TYPE') == 'NVIDIA':
115
- chat_model = nvidia_client()
116
- async def process_stream():
117
- nonlocal answer_yet # Use the outer scope's answer_yet variable
118
- # Without nonlocal, Python would create a new local variable answer_yet inside process_stream(),
119
- # instead of modifying the one from the outer scope.
120
- # Iterate over the streaming response chunks
121
- response = chat_model.chat_completion(
122
- model=model_config.get("reader","NVIDIA_MODEL"),
123
- messages=messages,
124
- stream=True,
125
- max_tokens=int(model_config.get('reader','MAX_TOKENS')),
126
- )
127
- for message in response:
128
- token = message.choices[0].delta.content
129
- if token:
130
- answer_yet += token
131
- parsed_answer = parse_output_llm_with_sources(answer_yet)
132
- history[-1] = (query, parsed_answer)
133
- yield [tuple(x) for x in history], docs_html
134
-
135
- # Stream the response updates
136
- async for update in process_stream():
137
- yield update
138
-
139
- else:
140
- chat_model = dedicated_endpoint()
141
- async def process_stream():
142
- # Without nonlocal, Python would create a new local variable answer_yet inside process_stream(),
143
- # instead of modifying the one from the outer scope.
144
- nonlocal answer_yet # Use the outer scope's answer_yet variable
145
- # Iterate over the streaming response chunks
146
- async for chunk in chat_model.astream(messages):
147
- token = chunk.content
148
- answer_yet += token
149
- parsed_answer = parse_output_llm_with_sources(answer_yet)
150
- history[-1] = (query, parsed_answer)
151
- yield [tuple(x) for x in history], docs_html
152
-
153
- # Stream the response updates
154
- async for update in process_stream():
155
- yield update
156
-
157
- # logging the event
158
- try:
159
- timestamp = str(datetime.now().timestamp())
160
- logs = {
161
- "system_prompt": SYSTEM_PROMPT,
162
- "sources":sources,
163
- "reports":reports,
164
- "subtype":subtype,
165
- "year":year,
166
- "question":query,
167
- "sources":sources,
168
- "retriever":model_config.get('retriever','MODEL'),
169
- "endpoint_type":model_config.get('reader','TYPE'),
170
- "raeder":model_config.get('reader','NVIDIA_MODEL'),
171
- "docs":[doc.page_content for doc in context_retrieved],
172
- "answer": history[-1][1],
173
- "time": timestamp,
174
- }
175
- save_logs(scheduler,JSON_DATASET_PATH,logs)
176
- except Exception as e:
177
- logging.error(e)
178
-
179
-
180
-
181
-
182
- #####-------------------------- Gradio App--------------------------------------####
183
-
184
- # Set up Gradio Theme
185
- theme = gr.themes.Base(
186
- primary_hue="blue",
187
- secondary_hue="red",
188
- font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
189
- text_size = gr.themes.utils.sizes.text_sm,
190
- )
191
-
192
- init_prompt = """
193
- Hello, I am Audit Q&A, a conversational assistant designed to help you understand audit Reports. I will answer your questions by using **Audit reports publishsed by Auditor General Office**.
194
- 💡 How to use (tabs on right)
195
- - **Reports**: You can choose to address your question to either specific report or a collection of report like District or Ministry focused reports. \
196
- If you dont select any then the Consolidated report is relied upon to answer your question.
197
- - **Examples**: We have curated some example questions,select a particular question from category of questions.
198
- - **Sources**: This tab will display the relied upon paragraphs from the report, to help you in assessing or fact checking if the answer provided by Audit Q&A assitant is correct or not.
199
- ⚠️ For limitations of the tool please check **Disclaimer** tab.
200
- """
201
-
202
-
203
- with gr.Blocks(title="Audit Q&A", css= "style.css", theme=theme,elem_id = "main-component") as demo:
204
- #----------------------------------------------------------------------------------------------
205
- # main tab where chat interaction happens
206
- # ---------------------------------------------------------------------------------------------
207
- with gr.Tab("AuditQ&A"):
208
-
209
- with gr.Row(elem_id="chatbot-row"):
210
- # chatbot output screen
211
- with gr.Column(scale=2):
212
- chatbot = gr.Chatbot(
213
- value=[(None,init_prompt)],
214
- show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",
215
- avatar_images = (None,"data-collection.png"),
216
- )
217
-
218
-
219
-
220
-
221
- with gr.Row(elem_id = "input-message"):
222
- textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,
223
- lines = 1,interactive = True,elem_id="input-textbox")
224
-
225
- # second column with playground area for user to select values
226
- with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):
227
- # creating tabs on right panel
228
- with gr.Tabs() as tabs:
229
- #---------------- tab for REPORTS SELECTION ----------------------
230
-
231
- with gr.Tab("Reports",elem_id = "tab-config",id = 2):
232
- gr.Markdown("Reminder: To get better results select the specific report/reports")
233
-
234
-
235
- #----- First level filter for selecting Report source/category ----------
236
- dropdown_sources = gr.Dropdown(
237
- ["Consolidated","Ministry, Department, Agency and Projects","Local Government","Value for Money","Thematic"],
238
- label="Select Report Category",
239
- value="Consolidated",
240
- interactive=True,
241
- )
242
-
243
- #------ second level filter for selecting subtype within the report category selected above
244
- dropdown_category = gr.Dropdown(
245
- new_files["Consolidated"],
246
- value = new_files["Consolidated"],
247
- label = "Filter for Sub-Type",
248
- interactive=True)
249
-
250
- #----------- update the secodn level filter abse don values from first level ----------------
251
- def rs_change(rs):
252
- return gr.update(choices=new_files[rs], value=new_files[rs])
253
- dropdown_sources.change(fn=rs_change, inputs=[dropdown_sources], outputs=[dropdown_category])
254
-
255
- #--------- Select the years for reports -------------------------------------
256
- dropdown_year = gr.Dropdown(
257
- ['2018','2019','2020','2021','2022','2023'],
258
- label="Filter for year",
259
- multiselect=True,
260
- value=['2023'],
261
- interactive=True,
262
- )
263
- gr.Markdown("-------------------------------------------------------------------------")
264
- #---------------- Another way to select reports across category and sub-type ------------
265
- dropdown_reports = gr.Dropdown(
266
- new_report_list,
267
- label="Or select specific reports",
268
- multiselect=True,
269
- value=[],
270
- interactive=True,)
271
-
272
- ############### tab for Question selection ###############
273
- with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
274
- examples_hidden = gr.Textbox(visible = False)
275
-
276
- # getting defualt key value to display
277
- first_key = list(QUESTIONS.keys())[0]
278
- # create the question category dropdown
279
- dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,
280
- interactive = True,show_label = True,
281
- label = "Select a category of sample questions",
282
- elem_id = "dropdown-samples")
283
-
284
-
285
- # iterate through the questions list
286
- samples = []
287
- for i,key in enumerate(QUESTIONS.keys()):
288
- examples_visible = True if i == 0 else False
289
- with gr.Row(visible = examples_visible) as group_examples:
290
- examples_questions = gr.Examples(
291
- QUESTIONS[key],
292
- [examples_hidden],
293
- examples_per_page=8,
294
- run_on_click=False,
295
- elem_id=f"examples{i}",
296
- api_name=f"examples{i}",
297
- # label = "Click on the example question or enter your own",
298
- # cache_examples=True,
299
- )
300
-
301
- samples.append(group_examples)
302
- ##------------------- tab for Sources reporting ##------------------
303
- with gr.Tab("Sources",elem_id = "tab-citations",id = 1):
304
- sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
305
- docs_textbox = gr.State("")
306
-
307
- def change_sample_questions(key):
308
- # update the questions list based on key selected
309
- index = list(QUESTIONS.keys()).index(key)
310
- visible_bools = [False] * len(samples)
311
- visible_bools[index] = True
312
- return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]
313
-
314
- dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
315
-
316
-
317
- # static tab 'about us'
318
- with gr.Tab("About",elem_classes = "max-height other-tabs"):
319
- with gr.Row():
320
- with gr.Column(scale=1):
321
- gr.Markdown("""The <ins>[**Office of the Auditor General (OAG)**](https://www.oag.go.ug/welcome)</ins> in Uganda, \
322
- consistent with the mandate of Supreme Audit Institutions (SAIs),\
323
- remains integral in ensuring transparency and fiscal responsibility.\
324
- Regularly, the OAG submits comprehensive audit reports to Parliament, \
325
- which serve as instrumental references for both policymakers and the public, \
326
- facilitating informed decisions regarding public expenditure.
327
-
328
- However, the prevalent underutilization of these audit reports, \
329
- leading to numerous unimplemented recommendations, has posed significant challenges\
330
- to the effectiveness and impact of the OAG's operations. The audit reports made available \
331
- to the public have not been effectively used by them and other relevant stakeholders. \
332
- The current format of the audit reports is considered a challenge to the \
333
- stakeholders' accessibility and usability. This in one way constrains transparency \
334
- and accountability in the utilization of public funds and effective service delivery.
335
-
336
- In the face of this, modern advancements in Artificial Intelligence (AI),\
337
- particularly Retrieval Augmented Generation (RAG) technology, \
338
- emerge as a promising solution. By harnessing the capabilities of such AI tools, \
339
- there is an opportunity not only to improve the accessibility and understanding \
340
- of these audit reports but also to ensure that their insights are effectively \
341
- translated into actionable outcomes, thereby reinforcing public transparency \
342
- and service delivery in Uganda.
343
-
344
- To address these issues, the OAG has initiated several projects, \
345
- such as the Audit Recommendation Tracking (ART) System and the Citizens Feedback Platform (CFP). \
346
- These systems are designed to increase the transparency and relevance of audit activities. \
347
- However, despite these efforts, engagement and awareness of the audit findings remain low, \
348
- and the complexity of the information often hinders effective public utilization. Recognizing the need for further\
349
- enhancement in how audit reports are processed and understood, \
350
- the **Civil Society and Budget Advocacy Group (CSBAG)** in partnership with the **GIZ**, \
351
- has recognizing the need for further enhancement in how audit reports are processed and understood.
352
-
353
- This prototype tool leveraging AI (Artificial Intelligence) aims at offering critical capabilities such as '
354
- summarizing complex texts, extracting thematic insights, and enabling interactive, \
355
- user-friendly analysis through a chatbot interface. By making the audit reports more accessible,\
356
- this aims to increase readership and utilization among stakeholders, \
357
- which can lead to better accountability and improve service delivery
358
-
359
- """)
360
-
361
-
362
- # static tab for disclaimer
363
- with gr.Tab("Disclaimer",elem_classes = "max-height other-tabs"):
364
- with gr.Row():
365
- with gr.Column(scale=1):
366
- gr.Markdown("""
367
- - This chatbot is intended for specific use of answering the questions based on audit reports published by OAG, for any use beyond this scope we have no liability to response provided by chatbot.
368
- - We do not guarantee the accuracy, reliability, or completeness of any information provided by the chatbot and disclaim any liability or responsibility for actions taken based on its responses.
369
- - The chatbot may occasionally provide inaccurate or inappropriate responses, and it is important to exercise judgment and critical thinking when interpreting its output.
370
- - The chatbot responses should not be considered professional or authoritative advice and are generated based on patterns in the data it has been trained on.
371
- - The chatbot's responses do not reflect the opinions or policies of our organization or its affiliates.
372
- - Any personal or sensitive information shared with the chatbot is at the user's own risk, and we cannot guarantee complete privacy or confidentiality.
373
- - the chatbot is not deterministic, so there might be change in answer to same question when asked by different users or multiple times.
374
- - By using this chatbot, you agree to these terms and acknowledge that you are solely responsible for any reliance on or actions taken based on its responses.
375
- - **This is just a prototype and being tested and worked upon, so its not perfect and may sometimes give irrelevant answers**. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.
376
- """)
377
-
378
-
379
-
380
-
381
- # using event listeners for 1. query box 2. click on example question
382
- # https://www.gradio.app/docs/gradio/textbox#event-listeners-arguments
383
- (textbox
384
- .submit(start_chat, [textbox, chatbot], [textbox, tabs, chatbot], queue=False, api_name="start_chat_textbox")
385
- # queue must be set as False (default) so the process is not waiting for another to be finished
386
- .then(chat, [textbox, chatbot, dropdown_sources, dropdown_reports, dropdown_category, dropdown_year], [chatbot, sources_textbox], queue=True, concurrency_limit=8, api_name="chat_textbox")
387
- .then(finish_chat, None, [textbox], api_name="finish_chat_textbox"))
388
-
389
- (examples_hidden
390
- .change(start_chat, [examples_hidden, chatbot], [textbox, tabs, chatbot], queue=False, api_name="start_chat_examples")
391
- # queue must be set as False (default) so the process is not waiting for another to be finished
392
- .then(chat, [examples_hidden, chatbot, dropdown_sources, dropdown_reports, dropdown_category, dropdown_year], [chatbot, sources_textbox], concurrency_limit=8, api_name="chat_examples")
393
- .then(finish_chat, None, [textbox], api_name="finish_chat_examples")
394
- )
395
-
396
- demo.queue()
397
-
398
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
auditqa/process_chunks.py CHANGED
@@ -179,4 +179,4 @@ def get_local_qdrant():
179
  client = QdrantClient(path="/data/local_qdrant")
180
  print("Collections in local Qdrant:",client.get_collections())
181
  qdrant_collections['allreports'] = Qdrant(client=client, collection_name='allreports', embeddings=embeddings, )
182
- return qdrant_collections
 
179
  client = QdrantClient(path="/data/local_qdrant")
180
  print("Collections in local Qdrant:",client.get_collections())
181
  qdrant_collections['allreports'] = Qdrant(client=client, collection_name='allreports', embeddings=embeddings, )
182
+ return qdrant_collections
auditqa/utils.py CHANGED
@@ -37,16 +37,16 @@ def make_html_source(source,i):
37
  meta = source.metadata
38
  content = source.page_content.strip()
39
 
40
- name = meta['filename']
41
  card = f"""
42
  <div class="card" id="doc{i}">
43
  <div class="card-content">
44
- <h2>Doc {i} - {meta['filename']} - Page {int(meta['page'])}</h2>
45
  <p>{content}</p>
46
  </div>
47
  <div class="card-footer">
48
- <span>{name}</span>
49
- <a href="{meta['filename']}#page={int(meta['page'])}" target="_blank" class="pdf-link">
50
  <span role="img" aria-label="Open PDF">🔗</span>
51
  </a>
52
  </div>
 
37
  meta = source.metadata
38
  content = source.page_content.strip()
39
 
40
+ name = meta['subtype']
41
  card = f"""
42
  <div class="card" id="doc{i}">
43
  <div class="card-content">
44
+ <h2>Doc {i} - {meta['subtype']} - Page {int(meta['page'])}</h2>
45
  <p>{content}</p>
46
  </div>
47
  <div class="card-footer">
48
+ <span>{subtype}</span>
49
+ <a href="{meta['subtype']}#page={int(meta['page'])}" target="_blank" class="pdf-link">
50
  <span role="img" aria-label="Open PDF">🔗</span>
51
  </a>
52
  </div>