Spaces:
Running
Running
import streamlit as st | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
def app(): | |
st.title("Text Similarity") | |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
with st.container(): | |
col1, col2 = st.columns(2) | |
with col1: | |
word_to_embed1 = st.text_input("Text 1", value="",) | |
with col2: | |
word_to_embed2 = st.text_input("Text 2", value="",) | |
if st.button("Embed"): | |
with st.spinner("Embedding comparing your inputs"): | |
document = [word_to_embed1 ,word_to_embed2] | |
#Encode paragraphs | |
document_embeddings = model.encode(document, show_progress_bar=False) | |
#Compute cosine similarity between labels sentences and paragraphs | |
similarity_matrix = cosine_similarity(label_embeddings, document_embeddings) | |
st.write("Text similarity:" similarity_matrix) |