peter2000's picture
Update apps/similarity.py
65131af
raw
history blame
1.25 kB
import streamlit as st
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from sentence_transformers import SentenceTransformer
def app():
st.title("Text Similarity")
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
with st.container():
col1, col2 = st.columns(2)
with col1:
word_to_embed1 = st.text_input("Text 1", value="The most vulnerable countries are seeking ‘loss and damage’ compensation from the biggest polluters.",)
with col2:
word_to_embed2 = st.text_input("Text 2", value="COP27 opens amid compounding crises of war, warming and economic instability.",)
if st.button("Embed"):
with st.spinner("Embedding comparing your inputs"):
document = [word_to_embed1 ,word_to_embed2]
#Encode paragraphs
document_embeddings = model.encode(document, show_progress_bar=False)
#Compute cosine similarity between labels sentences and paragraphs
similarity_matrix = cosine_similarity(document_embeddings)
st.write("Text similarity:", round(similarity_matrix[0][1]*100,2),"%")