import plotly.express as px
import streamlit as st
from sentence_transformers import SentenceTransformer
from huggingface_hub import hf_hub_url, cached_download
import umap.umap_ as umap
import pandas as pd
import os
import joblib
import pkg_resources
def init_models():
model_name = 'sentence-transformers/all-MiniLM-L6-v2'
model = SentenceTransformer(model_name)
REPO_ID = "peter2000/umap_embed_3d_all-MiniLM-L6-v2"
FILENAME = "umap_embed_3d_all-MiniLM-L6-v2.sav"
umap_model= joblib.load(cached_download(hf_hub_url(REPO_ID, FILENAME)))
return model, umap_model
def app():
with st.container():
st.markdown("
Text Embedder
",
unsafe_allow_html=True)
installed_packages = pkg_resources.working_set
list_ = ""
for package in installed_packages:
list_ = list_ + f"{package.key}=={package.version}\n"
st.download_button('Download Requirements', list_, file_name='requirements.txt')
st.write(' ')
st.write(' ')
with st.expander("âšī¸ - About this app", expanded=True):
st.write(
"""
Information cartography - Get your word/phrase/sentence/paragraph embedded and visualized.
The (English) sentence-transformers model "all-MiniLM-L6-v2" maps sentences & paragraphs to a 384-dimensional dense vector space This is normally used for tasks like clustering or semantic search, but in this case, we use it to place your text to a 3D map. Before plotting, the dimension needs to be reduced to three so we can actually plot it, but preserve as much information as possible. For this, we use a technology called umap. The sentence transformer is context-sensitive and works best with whole sentences, to account for that we extend your text with "The book is about ".
Simply put in your text and press EMBED, your examples will add up. You can use the category for different coloring.
""")
st.markdown("")
word_to_embed_list = st.session_state['embed_list']
cat_list = st.session_state['cat_list']
with st.container():
col1, col2 = st.columns(2)
with col1:
word_to_embed= st.text_input("Please enter your text here and we will embed it for you.", value="",)
with col2:
cat= st.selectbox('Category', ('1', '2', '3', '4', '5'))
if st.button("Embed"):
with st.spinner("đ Embedding your input"):
model, umap_model = init_models()
word_to_embed_list.append(word_to_embed)
st.session_state['embed_list'] = word_to_embed_list
cat_list .append(cat)
st.session_state['cat_list '] = cat_list
phrase_to_embed = ["The book is about "+ wte for wte in word_to_embed_list]
examples_embeddings = model.encode(phrase_to_embed)
examples_umap = umap_model.transform(examples_embeddings)
#st.write(len(examples_umap))
with st.spinner("đ create visualisation"):
fig = px.scatter_3d(
examples_umap[1:] , x=0, y=1, z=2,
color=cat_list[1:] ,
opacity = .7, hover_data=[word_to_embed_list[1:]])
fig.update_scenes(xaxis_visible=False, yaxis_visible=False,zaxis_visible=False )
fig.update_traces(marker_size=4)
st.plotly_chart(fig)