Spaces:
Runtime error
Runtime error
import requests | |
from PIL import Image | |
from io import BytesIO | |
from numpy import asarray | |
import gradio as gr | |
import numpy as np | |
from math import ceil | |
from huggingface_hub import from_pretrained_keras | |
api_key = 'https://api.nasa.gov/planetary/apod?api_key=0eyGPKWmJmE5Z0Ijx25oG56ydbTKWE2H75xuEefx' | |
date = '&date=2022-12-20' | |
def getRequest(date): | |
r = requests.get(api_key + date) | |
result = r.json() | |
receive = requests.get(result['url']) | |
img = Image.open(BytesIO(receive.content)).convert('RGB') | |
return img | |
model = from_pretrained_keras("GIanlucaRub/doubleResFinal") | |
def double_res(input_image): | |
input_height = input_image.shape[0] | |
input_width = input_image.shape[1] | |
height = ceil(input_height/128) | |
width = ceil(input_width/128) | |
expanded_input_image = np.zeros((128*height, 128*width, 3), dtype=np.uint8) | |
np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image) | |
output_image = np.zeros((128*height*2, 128*width*2, 3), dtype=np.float32) | |
to_predict = [] | |
for i in range(height): | |
for j in range(width): | |
temp_slice = expanded_input_image[i * | |
128:(i+1)*128, j*128:(j+1)*128]/255 | |
to_predict.append(temp_slice) | |
# removing inner borders | |
for i in range(height): | |
for j in range(width): | |
if i != 0 and j != 0 and i != height-1 and j != width-1: | |
right_slice = expanded_input_image[i * | |
128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255 | |
to_predict.append(right_slice) | |
left_slice = expanded_input_image[i * | |
128:(i+1)*128, j*128-64:(j)*128+64]/255 | |
to_predict.append(left_slice) | |
upper_slice = expanded_input_image[( | |
i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255 | |
to_predict.append(upper_slice) | |
lower_slice = expanded_input_image[i * | |
128-64:i*128+64, j*128:(j+1)*128]/255 | |
to_predict.append(lower_slice) | |
# removing angles | |
lower_right_slice = expanded_input_image[i * | |
128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255 | |
to_predict.append(lower_right_slice) | |
lower_left_slice = expanded_input_image[i * | |
128-64:i*128+64, j*128-64:j*128+64]/255 | |
to_predict.append(lower_left_slice) | |
# predicting all images at once | |
predicted = model.predict(np.array(to_predict),batch_size = 4) | |
counter = 0 | |
for i in range(height): | |
for j in range(width): | |
np.copyto(output_image[i*256:(i+1)*256, j * | |
256:(j+1)*256], predicted[counter]) | |
counter+=1 | |
for i in range(height): | |
for j in range(width): | |
if i != 0 and j != 0 and i != height-1 and j != width-1: | |
right_upsampled_slice = predicted[counter] | |
counter+=1 | |
resized_right_slice = right_upsampled_slice[64:192, 64:192] | |
np.copyto(output_image[i*256+64:(i+1)*256-64, | |
(j+1)*256-64:(j+1)*256+64], resized_right_slice) | |
left_upsampled_slice = predicted[counter] | |
counter+=1 | |
resized_left_slice = left_upsampled_slice[64:192, 64:192] | |
np.copyto(output_image[i*256+64:(i+1)*256-64, | |
j*256-64:j*256+64], resized_left_slice) | |
upper_upsampled_slice = predicted[counter] | |
counter+=1 | |
resized_upper_slice = upper_upsampled_slice[64:192, 64:192] | |
np.copyto(output_image[(i+1)*256-64:(i+1)*256+64, | |
j*256+64:(j+1)*256-64], resized_upper_slice) | |
lower_upsampled_slice = predicted[counter] | |
counter+=1 | |
resized_lower_slice = lower_upsampled_slice[64:192, 64:192] | |
np.copyto(output_image[i*256-64:i*256+64, | |
j*256+64:(j+1)*256-64], resized_lower_slice) | |
lower_right_upsampled_slice = predicted[counter] | |
counter+=1 | |
resized_lower_right_slice = lower_right_upsampled_slice[64:192, 64:192] | |
np.copyto(output_image[i*256-64:i*256+64, (j+1) | |
* 256-64:(j+1)*256+64], resized_lower_right_slice) | |
lower_left_upsampled_slice = predicted[counter] | |
counter+=1 | |
resized_lower_left_slice = lower_left_upsampled_slice[64:192, 64:192] | |
np.copyto( | |
output_image[i*256-64:i*256+64, j*256-64:j*256+64], resized_lower_left_slice) | |
resized_output_image = output_image[0:input_height*2, 0:input_width*2] | |
return resized_output_image | |
def get_new_img(): | |
# sometimes the new image is a video | |
try: | |
original_img = getRequest('') | |
except: | |
original_img = getRequest(date) | |
numpydata = asarray(original_img) | |
doubled_img = double_res(numpydata) # numpy.ndarray | |
return original_img,doubled_img | |
original_img, doubled_img = get_new_img() | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Label("Original image") | |
original = gr.Image(original_img) | |
with gr.Column(): | |
gr.Label("Image with doubled resolution") | |
doubled = gr.Image(doubled_img) | |
with gr.Row(): | |
btn_get = gr.Button("Get the new daily image") | |
# Event | |
btn_get.click(get_new_img, inputs=None, outputs = [original,doubled]) | |
demo.launch() |