GIanlucaRub's picture
Update app.py
e547f95
raw
history blame
5.24 kB
import requests
from PIL import Image
from io import BytesIO
from numpy import asarray
import gradio as gr
import numpy as np
from math import ceil
from huggingface_hub import from_pretrained_keras
api_key = 'https://api.nasa.gov/planetary/apod?api_key=0eyGPKWmJmE5Z0Ijx25oG56ydbTKWE2H75xuEefx'
date = '&date=2022-12-20'
def getRequest(date):
r = requests.get(api_key + date)
result = r.json()
receive = requests.get(result['url'])
img = Image.open(BytesIO(receive.content)).convert('RGB')
return img
model = from_pretrained_keras("GIanlucaRub/doubleResFinal")
def double_res(input_image):
input_height = input_image.shape[0]
input_width = input_image.shape[1]
height = ceil(input_height/128)
width = ceil(input_width/128)
expanded_input_image = np.zeros((128*height, 128*width, 3), dtype=np.uint8)
np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image)
output_image = np.zeros((128*height*2, 128*width*2, 3), dtype=np.float32)
for i in range(height):
for j in range(width):
temp_slice = expanded_input_image[i *
128:(i+1)*128, j*128:(j+1)*128]/255
upsampled_slice = model.predict(temp_slice[np.newaxis, ...])
np.copyto(output_image[i*256:(i+1)*256, j *
256:(j+1)*256], upsampled_slice[0])
if i != 0 and j != 0 and i != height-1 and j != width-1:
# removing inner borders
right_slice = expanded_input_image[i *
128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255
right_upsampled_slice = model.predict(
right_slice[np.newaxis, ...])
resized_right_slice = right_upsampled_slice[0][64:192, 64:192]
np.copyto(output_image[i*256+64:(i+1)*256-64,
(j+1)*256-64:(j+1)*256+64], resized_right_slice)
left_slice = expanded_input_image[i *
128:(i+1)*128, j*128-64:(j)*128+64]/255
left_upsampled_slice = model.predict(
left_slice[np.newaxis, ...])
resized_left_slice = left_upsampled_slice[0][64:192, 64:192]
np.copyto(output_image[i*256+64:(i+1)*256-64,
j*256-64:j*256+64], resized_left_slice)
upper_slice = expanded_input_image[(
i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255
upper_upsampled_slice = model.predict(
upper_slice[np.newaxis, ...])
resized_upper_slice = upper_upsampled_slice[0][64:192, 64:192]
np.copyto(output_image[(i+1)*256-64:(i+1)*256+64,
j*256+64:(j+1)*256-64], resized_upper_slice)
lower_slice = expanded_input_image[i *
128-64:i*128+64, j*128:(j+1)*128]/255
lower_upsampled_slice = model.predict(
lower_slice[np.newaxis, ...])
resized_lower_slice = lower_upsampled_slice[0][64:192, 64:192]
np.copyto(output_image[i*256-64:i*256+64,
j*256+64:(j+1)*256-64], resized_lower_slice)
# removing angles
lower_right_slice = expanded_input_image[i *
128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255
lower_right_upsampled_slice = model.predict(
lower_right_slice[np.newaxis, ...])
resized_lower_right_slice = lower_right_upsampled_slice[0][64:192, 64:192]
np.copyto(output_image[i*256-64:i*256+64, (j+1)
* 256-64:(j+1)*256+64], resized_lower_right_slice)
lower_left_slice = expanded_input_image[i *
128-64:i*128+64, j*128-64:j*128+64]/255
lower_left_upsampled_slice = model.predict(
lower_left_slice[np.newaxis, ...])
resized_lower_left_slice = lower_left_upsampled_slice[0][64:192, 64:192]
np.copyto(
output_image[i*256-64:i*256+64, j*256-64:j*256+64], resized_lower_left_slice)
resized_output_image = output_image[0:input_height*2, 0:input_width*2]
return resized_output_image
def get_new_img():
# sometimes the new image is a video
try:
original_img = getRequest('')
except:
original_img = getRequest(date)
numpydata = asarray(original_img)
doubled_img = double_res(numpydata) # numpy.ndarray
return original_img,doubled_img
original_img, doubled_img = get_new_img()
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Label("Original image")
original = gr.Image(original_img)
with gr.Column():
gr.Label("Image with doubled resolution")
doubled = gr.Image(doubled_img)
with gr.Row():
btn_get = gr.Button("Get the new daily image")
# Event
btn_get.click(get_new_img, inputs=None, outputs = [original,doubled])
demo.launch()