GIanlucaRub commited on
Commit
f283201
·
1 Parent(s): 90a3f92

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -37
app.py CHANGED
@@ -5,58 +5,116 @@ from huggingface_hub import from_pretrained_keras
5
 
6
  model = from_pretrained_keras("GIanlucaRub/doubleResFinal")
7
  def double_res(input_image):
8
- input_height = input_image.shape[0]
9
- input_width = input_image.shape[1]
10
  height = ceil(input_height/128)
11
  width = ceil(input_width/128)
12
- expanded_input_image = np.zeros((128*height, 128*width,3), dtype=np.uint8)
13
  np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image)
14
-
15
- output_image = np.zeros((128*height*2, 128*width*2,3), dtype=np.float32)
16
 
 
 
 
17
  for i in range(height):
18
  for j in range(width):
19
- temp_slice = expanded_input_image[i*128:(i+1)*128, j*128:(j+1)*128]/255
20
- upsampled_slice = model.predict(temp_slice[np.newaxis, ...])
21
- np.copyto(output_image[i*256:(i+1)*256, j*256:(j+1)*256], upsampled_slice[0])
22
- if i!= 0 and j!= 0 and i != height-1 and j!=width-1:
23
  # removing inner borders
24
- right_slice = expanded_input_image[i*128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255
25
- right_upsampled_slice = model.predict(right_slice[np.newaxis, ...])
26
- resized_right_slice = right_upsampled_slice[0][64:192,64:192]
27
- np.copyto(output_image[i*256+64:(i+1)*256-64, (j+1)*256-64:(j+1)*256+64], resized_right_slice)
28
-
29
- left_slice = expanded_input_image[i*128:(i+1)*128, j*128-64:(j)*128+64]/255
30
- left_upsampled_slice = model.predict(left_slice[np.newaxis, ...])
31
- resized_left_slice = left_upsampled_slice[0][64:192,64:192]
32
- np.copyto(output_image[i*256+64:(i+1)*256-64, j*256-64:j*256+64], resized_left_slice)
33
-
34
- upper_slice = expanded_input_image[(i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255
35
- upper_upsampled_slice = model.predict(upper_slice[np.newaxis, ...])
36
- resized_upper_slice = upper_upsampled_slice[0][64:192,64:192]
37
- np.copyto(output_image[(i+1)*256-64:(i+1)*256+64, j*256+64:(j+1)*256-64], resized_upper_slice)
 
 
 
38
 
39
- lower_slice = expanded_input_image[i*128-64:i*128+64, j*128:(j+1)*128]/255
40
- lower_upsampled_slice = model.predict(lower_slice[np.newaxis, ...])
41
- resized_lower_slice = lower_upsampled_slice[0][64:192,64:192]
42
- np.copyto(output_image[i*256-64:i*256+64, j*256+64:(j+1)*256-64], resized_lower_slice)
43
 
 
 
 
 
 
 
 
 
44
 
45
- # removing angles
46
- lower_right_slice = expanded_input_image[i*128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255
47
- lower_right_upsampled_slice = model.predict(lower_right_slice[np.newaxis, ...])
48
- resized_lower_right_slice = lower_right_upsampled_slice[0][64:192,64:192]
49
- np.copyto(output_image[i*256-64:i*256+64, (j+1)*256-64:(j+1)*256+64], resized_lower_right_slice)
 
 
 
 
 
 
 
 
50
 
51
- lower_left_slice = expanded_input_image[i*128-64:i*128+64, j*128-64:j*128+64]/255
52
- lower_left_upsampled_slice = model.predict(lower_left_slice[np.newaxis, ...])
53
- resized_lower_left_slice = lower_left_upsampled_slice[0][64:192,64:192]
54
- np.copyto(output_image[i*256-64:i*256+64, j*256-64:j*256+64], resized_lower_left_slice)
 
 
 
 
 
 
55
 
 
56
 
 
 
 
 
 
57
 
 
 
 
 
 
 
 
58
 
59
- resized_output_image = output_image[0:input_height*2,0:input_width*2]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  return resized_output_image
61
 
62
  demo = gr.Interface(
 
5
 
6
  model = from_pretrained_keras("GIanlucaRub/doubleResFinal")
7
  def double_res(input_image):
8
+ input_height = input_image.shape[0]
9
+ input_width = input_image.shape[1]
10
  height = ceil(input_height/128)
11
  width = ceil(input_width/128)
12
+ expanded_input_image = np.zeros((128*height, 128*width, 3), dtype=np.uint8)
13
  np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image)
 
 
14
 
15
+ output_image = np.zeros((128*height*2, 128*width*2, 3), dtype=np.float32)
16
+
17
+ to_predict = []
18
  for i in range(height):
19
  for j in range(width):
20
+ temp_slice = expanded_input_image[i *
21
+ 128:(i+1)*128, j*128:(j+1)*128]/255
22
+ to_predict.append(temp_slice)
23
+
24
  # removing inner borders
25
+
26
+ for i in range(height):
27
+ for j in range(width):
28
+ if i != 0 and j != 0 and i != height-1 and j != width-1:
29
+ right_slice = expanded_input_image[i *
30
+ 128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255
31
+ to_predict.append(right_slice)
32
+
33
+
34
+ left_slice = expanded_input_image[i *
35
+ 128:(i+1)*128, j*128-64:(j)*128+64]/255
36
+ to_predict.append(left_slice)
37
+
38
+
39
+ upper_slice = expanded_input_image[(
40
+ i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255
41
+ to_predict.append(upper_slice)
42
 
 
 
 
 
43
 
44
+ lower_slice = expanded_input_image[i *
45
+ 128-64:i*128+64, j*128:(j+1)*128]/255
46
+ to_predict.append(lower_slice)
47
+ # removing angles
48
+
49
+ lower_right_slice = expanded_input_image[i *
50
+ 128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255
51
+ to_predict.append(lower_right_slice)
52
 
53
+ lower_left_slice = expanded_input_image[i *
54
+ 128-64:i*128+64, j*128-64:j*128+64]/255
55
+ to_predict.append(lower_left_slice)
56
+
57
+ # predicting all images at once
58
+ predicted = model.predict(np.array(to_predict))
59
+ counter = 0
60
+ for i in range(height):
61
+ for j in range(width):
62
+ np.copyto(output_image[i*256:(i+1)*256, j *
63
+ 256:(j+1)*256], predicted[counter])
64
+ counter+=1
65
+
66
 
67
+
68
+ for i in range(height):
69
+ for j in range(width):
70
+ if i != 0 and j != 0 and i != height-1 and j != width-1:
71
+ right_upsampled_slice = predicted[counter]
72
+ counter+=1
73
+ resized_right_slice = right_upsampled_slice[64:192, 64:192]
74
+ np.copyto(output_image[i*256+64:(i+1)*256-64,
75
+ (j+1)*256-64:(j+1)*256+64], resized_right_slice)
76
+
77
 
78
+
79
 
80
+ left_upsampled_slice = predicted[counter]
81
+ counter+=1
82
+ resized_left_slice = left_upsampled_slice[64:192, 64:192]
83
+ np.copyto(output_image[i*256+64:(i+1)*256-64,
84
+ j*256-64:j*256+64], resized_left_slice)
85
 
86
+
87
+
88
+ upper_upsampled_slice = predicted[counter]
89
+ counter+=1
90
+ resized_upper_slice = upper_upsampled_slice[64:192, 64:192]
91
+ np.copyto(output_image[(i+1)*256-64:(i+1)*256+64,
92
+ j*256+64:(j+1)*256-64], resized_upper_slice)
93
 
94
+
95
+
96
+ lower_upsampled_slice = predicted[counter]
97
+ counter+=1
98
+ resized_lower_slice = lower_upsampled_slice[64:192, 64:192]
99
+ np.copyto(output_image[i*256-64:i*256+64,
100
+ j*256+64:(j+1)*256-64], resized_lower_slice)
101
+
102
+
103
+
104
+ lower_right_upsampled_slice = predicted[counter]
105
+ counter+=1
106
+ resized_lower_right_slice = lower_right_upsampled_slice[64:192, 64:192]
107
+ np.copyto(output_image[i*256-64:i*256+64, (j+1)
108
+ * 256-64:(j+1)*256+64], resized_lower_right_slice)
109
+
110
+
111
+ lower_left_upsampled_slice = predicted[counter]
112
+ counter+=1
113
+ resized_lower_left_slice = lower_left_upsampled_slice[64:192, 64:192]
114
+ np.copyto(
115
+ output_image[i*256-64:i*256+64, j*256-64:j*256+64], resized_lower_left_slice)
116
+
117
+ resized_output_image = output_image[0:input_height*2, 0:input_width*2]
118
  return resized_output_image
119
 
120
  demo = gr.Interface(