Final_Project / utils.py
GMARTINEZMILLA's picture
Update utils.py
e00db24 verified
raw
history blame
6.09 kB
import os
import streamlit as st
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from joblib import dump, load
from sklearn.preprocessing import normalize
import re
from datasets import load_dataset, Dataset
# Load the dataset from Hugging Face Datasets
def load_files_from_huggingface():
dataset = load_dataset("GMARTINEZMILLA/deepsinisghtz_dataset", split="train")
# Load CSV file
cestas_file = dataset['cestas_final.csv']
cestas = pd.read_csv(cestas_file)
# Load joblib files
count_matrix_file = dataset['count_matrix_0001.joblib']
count_vectorizer_file = dataset['count_vectorizer_0001.joblib']
tf_matrix = load(count_matrix_file)
count_vectorizer = load(count_vectorizer_file)
return cestas, tf_matrix, count_vectorizer
# Save updated files back to Hugging Face Datasets
def save_files_to_huggingface(cestas, tf_matrix, count_vectorizer):
# Save updated CSV file
cestas.to_csv('cestas_final.csv', index=False)
# Create new dataset and push to Hugging Face
dataset = Dataset.from_pandas(cestas)
dataset.push_to_hub("GMARTINEZMILLA/deepsinisghtz_dataset")
# Save updated joblib files
dump(tf_matrix, 'count_matrix_0002.joblib') # Increment version
dump(count_vectorizer, 'count_vectorizer_0002.joblib') # Increment version
# Optionally, push joblib files back to Hugging Face Datasets (if supported)
# You can manually add these files to the dataset in the Hugging Face interface if needed
def get_next_version(file_prefix):
"""Return the next version number for joblib files."""
# You can hardcode or generate a new version name (e.g., 0002, 0003, etc.)
return f"{file_prefix}_0002.joblib"
def recomienda_tf(new_basket, cestas, productos):
# Load the latest versions of the matrix and vectorizer
tf_matrix_file = 'count_matrix_0001.joblib'
count_vectorizer_file = 'count_vectorizer_0001.joblib'
tf_matrix = load(tf_matrix_file)
count_vectorizer = load(count_vectorizer_file)
# Convert the new basket into TF (Term Frequency) format
new_basket_str = ' '.join(new_basket)
new_basket_vector = count_vectorizer.transform([new_basket_str])
new_basket_tf = normalize(new_basket_vector, norm='l1') # Normalize the count matrix for the current basket
# Compare the new basket with previous ones
similarities = cosine_similarity(new_basket_tf, tf_matrix)
# Get the indices of the most similar baskets
similar_indices = similarities.argsort()[0][-4:] # Top 4 most similar baskets
# Create a dictionary to count recommendations
recommendations_count = {}
total_similarity = 0
# Recommend products from similar baskets
for idx in similar_indices:
sim_score = similarities[0][idx]
total_similarity += sim_score # Sum of similarities
products = cestas.iloc[idx]['Cestas'].split()
unique_products = set(products) # Use a set to get unique products
for product in unique_products:
if product.strip() not in new_basket: # Avoid recommending items already in the basket
recommendations_count[product.strip()] = recommendations_count.get(product.strip(), 0) + sim_score
# Calculate the relative probability of each recommended product
recommendations_with_prob = []
if total_similarity > 0:
recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
else:
print("No se encontraron similitudes suficientes para calcular probabilidades.")
# Sort recommendations by relevance score
recommendations_with_prob.sort(key=lambda x: x[1], reverse=True)
# Create a new DataFrame to store recommendations
recommendations_data = []
for product, score in recommendations_with_prob:
# Search for the product description in the products DataFrame
description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
if not description.empty:
recommendations_data.append({
'ARTICULO': product,
'DESCRIPCION': description.values[0],
'RELEVANCIA': score
})
recommendations_df = pd.DataFrame(recommendations_data)
return recommendations_df.head(5)
def retroalimentacion(cestas, cesta_nueva):
# Convert basket from list to string
cesta_unida = ' '.join(cesta_nueva)
# Debugging message
st.write(f"DEBUG: La nueva cesta es {cesta_unida}")
# Add the new basket to the historical baskets if it doesn't already exist
if not cestas['Cestas'].isin([cesta_unida]).any():
cestas.loc[len(cestas)] = cesta_unida
st.success("✓ Cesta añadida al DataFrame.")
# Save the updated DataFrame and joblib files back to Hugging Face Datasets
save_files_to_huggingface(cestas, tf_matrix, count_vectorizer)
st.write("DEBUG: Los archivos se han guardado en Hugging Face Datasets.")
else:
st.warning("⚠️ La cesta ya existe en el DataFrame.")
# Re-vectorize the basket DataFrame
count_vectorizer = CountVectorizer()
count_vectorizer.fit(cestas['Cestas'])
count_matrix = count_vectorizer.transform(cestas['Cestas'])
tf_matrix = normalize(count_matrix, norm='l1')
# Save new versions of the vectorizer and matrix
count_vectorizer_file = get_next_version('count_vectorizer')
tf_matrix_file = get_next_version('count_matrix')
dump(count_vectorizer, count_vectorizer_file)
dump(tf_matrix, tf_matrix_file)
# Debugging messages
st.write(f"DEBUG: Se ha generado la nueva versión del count_vectorizer: {count_vectorizer_file}")
st.write(f"DEBUG: Se ha generado la nueva versión del tf_matrix: {tf_matrix_file}")
return None