GMARTINEZMILLA commited on
Commit
4f07877
·
1 Parent(s): 43107a1

feat: updated website

Browse files
Files changed (1) hide show
  1. app.py +1 -4
app.py CHANGED
@@ -273,7 +273,6 @@ elif page == "Customer Analysis":
273
  # Load the Corresponding Model
274
  model_path = f'models/modelo_cluster_{cluster}.txt'
275
  gbm = lgb.Booster(model_file=model_path)
276
- time.sleep(1)
277
 
278
  with st.spinner("Getting the data ready..."):
279
  # Load predict data for that cluster
@@ -281,14 +280,12 @@ elif page == "Customer Analysis":
281
 
282
  # Convert cliente_id to string
283
  predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
284
- time.sleep(1)
285
 
286
  with st.spinner("Filtering data..."):
287
 
288
  # Filter for the specific customer
289
  customer_code_str = str(customer_code)
290
  customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
291
- time.sleep(1)
292
 
293
  with st.spinner("Generating sales predictions..."):
294
 
@@ -408,7 +405,7 @@ elif page == "Customer Analysis":
408
 
409
  # st.write(f"### Results for top {len(manufacturers)} manufacturers:")
410
  for manufacturer, value, amount in zip(manufacturers, values, amounts):
411
- st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
412
 
413
  if manufacturers: # Only create the chart if we have data
414
  fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
 
273
  # Load the Corresponding Model
274
  model_path = f'models/modelo_cluster_{cluster}.txt'
275
  gbm = lgb.Booster(model_file=model_path)
 
276
 
277
  with st.spinner("Getting the data ready..."):
278
  # Load predict data for that cluster
 
280
 
281
  # Convert cliente_id to string
282
  predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
 
283
 
284
  with st.spinner("Filtering data..."):
285
 
286
  # Filter for the specific customer
287
  customer_code_str = str(customer_code)
288
  customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
 
289
 
290
  with st.spinner("Generating sales predictions..."):
291
 
 
405
 
406
  # st.write(f"### Results for top {len(manufacturers)} manufacturers:")
407
  for manufacturer, value, amount in zip(manufacturers, values, amounts):
408
+ (f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
409
 
410
  if manufacturers: # Only create the chart if we have data
411
  fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')