Spaces:
Sleeping
Sleeping
Update utils.py
Browse files
utils.py
CHANGED
|
@@ -1,65 +1,16 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import numpy as np
|
| 3 |
import warnings
|
| 4 |
-
import glob
|
| 5 |
-
import os
|
| 6 |
-
import re
|
| 7 |
warnings.filterwarnings('ignore')
|
| 8 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 9 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
from joblib import dump, load
|
| 11 |
from sklearn.preprocessing import normalize
|
| 12 |
|
| 13 |
-
def get_latest_version(base_filename):
|
| 14 |
-
"""
|
| 15 |
-
Obtiene la 煤ltima versi贸n del archivo guardado.
|
| 16 |
-
Args:
|
| 17 |
-
base_filename (str): Nombre base del archivo (sin versi贸n)
|
| 18 |
-
Returns:
|
| 19 |
-
str: Nombre del archivo con la versi贸n m谩s reciente
|
| 20 |
-
"""
|
| 21 |
-
# Buscar todos los archivos que coincidan con el patr贸n
|
| 22 |
-
pattern = f"{base_filename}_*.joblib"
|
| 23 |
-
matching_files = glob.glob(pattern)
|
| 24 |
-
|
| 25 |
-
if not matching_files:
|
| 26 |
-
return f"{base_filename}_0001.joblib"
|
| 27 |
-
|
| 28 |
-
# Extraer los n煤meros de versi贸n y encontrar el m谩ximo
|
| 29 |
-
versions = []
|
| 30 |
-
for file in matching_files:
|
| 31 |
-
match = re.search(r'_(\d{4})\.joblib$', file)
|
| 32 |
-
if match:
|
| 33 |
-
versions.append(int(match.group(1)))
|
| 34 |
-
|
| 35 |
-
if versions:
|
| 36 |
-
latest_version = max(versions)
|
| 37 |
-
return f"{base_filename}_{latest_version:04d}.joblib"
|
| 38 |
-
|
| 39 |
-
return f"{base_filename}_0001.joblib"
|
| 40 |
-
|
| 41 |
-
def get_next_version(base_filename):
|
| 42 |
-
"""
|
| 43 |
-
Genera el nombre del archivo para la siguiente versi贸n.
|
| 44 |
-
Args:
|
| 45 |
-
base_filename (str): Nombre base del archivo (sin versi贸n)
|
| 46 |
-
Returns:
|
| 47 |
-
str: Nombre del archivo con la siguiente versi贸n
|
| 48 |
-
"""
|
| 49 |
-
latest_file = get_latest_version(base_filename)
|
| 50 |
-
match = re.search(r'_(\d{4})\.joblib$', latest_file)
|
| 51 |
-
if match:
|
| 52 |
-
current_version = int(match.group(1))
|
| 53 |
-
next_version = current_version + 1
|
| 54 |
-
else:
|
| 55 |
-
next_version = 1
|
| 56 |
-
|
| 57 |
-
return f"{base_filename}_{next_version:04d}.joblib"
|
| 58 |
-
|
| 59 |
def recomienda_tf(new_basket, cestas, productos):
|
| 60 |
# Cargar la matriz TF y el modelo
|
| 61 |
-
tf_matrix = load(
|
| 62 |
-
count = load(
|
| 63 |
|
| 64 |
# Convertir la nueva cesta en formato TF (Term Frequency)
|
| 65 |
new_basket_str = ' '.join(new_basket)
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import numpy as np
|
| 3 |
import warnings
|
|
|
|
|
|
|
|
|
|
| 4 |
warnings.filterwarnings('ignore')
|
| 5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 6 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 7 |
from joblib import dump, load
|
| 8 |
from sklearn.preprocessing import normalize
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def recomienda_tf(new_basket, cestas, productos):
|
| 11 |
# Cargar la matriz TF y el modelo
|
| 12 |
+
tf_matrix = load('tf_matrix.joblib')
|
| 13 |
+
count = load('count_vectorizer.joblib')
|
| 14 |
|
| 15 |
# Convertir la nueva cesta en formato TF (Term Frequency)
|
| 16 |
new_basket_str = ' '.join(new_basket)
|