Spaces:
Sleeping
Sleeping
Commit
·
ad618df
1
Parent(s):
9d618d8
feat: updated app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
-
import plotly.graph_objects as go
|
5 |
import matplotlib.pyplot as plt
|
6 |
import numpy as np
|
7 |
import lightgbm as lgb
|
@@ -12,76 +11,84 @@ from sklearn.metrics import mean_absolute_error, mean_squared_error
|
|
12 |
# Page configuration
|
13 |
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
|
14 |
|
15 |
-
# Load CSV files
|
16 |
df = pd.read_csv("df_clean.csv")
|
17 |
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
|
18 |
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
|
19 |
ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',')
|
20 |
-
customer_clusters = pd.read_csv('predicts/customer_clusters.csv')
|
21 |
-
df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
|
22 |
|
23 |
# Ensure customer codes are strings
|
24 |
df['CLIENTE'] = df['CLIENTE'].astype(str)
|
25 |
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
|
26 |
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
|
27 |
-
customer_clusters['cliente_id'] = customer_clusters['cliente_id'].astype(str)
|
28 |
fieles_df = pd.read_csv("clientes_relevantes.csv")
|
29 |
cestas = pd.read_csv("cestas.csv")
|
30 |
productos = pd.read_csv("productos.csv")
|
31 |
df_agg_2024['cliente_id'] = df_agg_2024['cliente_id'].astype(str)
|
32 |
|
33 |
-
# Convert columns
|
34 |
for col in euros_proveedor.columns:
|
35 |
if col != 'CLIENTE':
|
36 |
euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')
|
37 |
|
38 |
-
# Check for NaN values
|
39 |
if euros_proveedor.isna().any().any():
|
40 |
st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")
|
41 |
|
42 |
-
# Ignore the last two columns
|
43 |
df = df.iloc[:, :-2]
|
44 |
|
45 |
# Function to get supplier name
|
46 |
def get_supplier_name(code):
|
47 |
-
code = str(code)
|
48 |
name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
|
49 |
return name[0] if len(name) > 0 else code
|
50 |
|
51 |
-
# Function to create radar chart
|
52 |
def radar_chart(categories, values, amounts, title):
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
categories.append(categories[0])
|
57 |
-
|
58 |
-
fig = px.line_polar(
|
59 |
-
r=values,
|
60 |
-
theta=categories,
|
61 |
-
line_close=True,
|
62 |
-
labels={'r': '% Units Sold', 'theta': 'Manufacturers'},
|
63 |
-
title=title
|
64 |
-
)
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
fig.update_traces(fill='toself') # Fill the radar chart area
|
78 |
-
fig.update_layout(
|
79 |
-
polar=dict(
|
80 |
-
radialaxis=dict(visible=True, range=[0, 1])
|
81 |
-
),
|
82 |
-
showlegend=True
|
83 |
-
)
|
84 |
-
|
85 |
return fig
|
86 |
|
87 |
# Main page design
|
@@ -114,632 +121,368 @@ elif page == "Customer Analysis":
|
|
114 |
|
115 |
if st.button("Calcular"):
|
116 |
if customer_code:
|
|
|
117 |
customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
|
118 |
|
119 |
if not customer_match.empty:
|
120 |
cluster = customer_match['cluster_id'].values[0]
|
121 |
st.write(f"Customer {customer_code} belongs to cluster {cluster}")
|
122 |
|
123 |
-
# Load the
|
124 |
model_path = f'models/modelo_cluster_{cluster}.txt'
|
125 |
gbm = lgb.Booster(model_file=model_path)
|
126 |
st.write(f"Loaded model for cluster {cluster}")
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
# Load predict data for that cluster
|
129 |
predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv')
|
|
|
|
|
130 |
predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
|
|
|
|
|
|
|
|
|
131 |
|
132 |
# Filter for the specific customer
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
if not customer_data.empty:
|
|
|
136 |
lag_features = [f'precio_total_lag_{lag}' for lag in range(1, 25)]
|
137 |
features = lag_features + ['mes', 'marca_id_encoded', 'año', 'cluster_id']
|
|
|
|
|
138 |
X_predict = customer_data[features]
|
139 |
|
140 |
# Convert categorical features to 'category' dtype
|
141 |
categorical_features = ['mes', 'marca_id_encoded', 'cluster_id']
|
142 |
for feature in categorical_features:
|
143 |
X_predict[feature] = X_predict[feature].astype('category')
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
# Make Prediction for the selected customer
|
146 |
y_pred = gbm.predict(X_predict, num_iteration=gbm.best_iteration)
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
149 |
results = customer_data[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
|
150 |
results['ventas_predichas'] = y_pred
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
-
# Load actual
|
153 |
-
actual_sales = df_agg_2024[df_agg_2024['cliente_id'] ==
|
|
|
|
|
|
|
|
|
154 |
if not actual_sales.empty:
|
155 |
-
results = results.merge(
|
156 |
-
|
157 |
-
|
158 |
-
how='left'
|
159 |
-
)
|
160 |
results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
|
161 |
results['ventas_reales'].fillna(0, inplace=True)
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
164 |
valid_results = results.dropna(subset=['ventas_reales'])
|
165 |
if not valid_results.empty:
|
166 |
mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
|
167 |
mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
|
168 |
rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
|
169 |
|
|
|
170 |
st.write(f"MAE: {mae:.2f}")
|
171 |
st.write(f"MAPE: {mape:.2f}%")
|
172 |
st.write(f"RMSE: {rmse:.2f}")
|
173 |
|
174 |
-
#
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
'sales': top_sales.loc[combined_top, top_sales.columns[0]]
|
183 |
-
}).fillna(0)
|
184 |
-
|
185 |
-
manufacturers = [get_supplier_name(m) for m in combined_data.index]
|
186 |
-
values = combined_data['units'].tolist()
|
187 |
-
amounts = combined_data['sales'].tolist()
|
188 |
-
|
189 |
-
fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Customer {customer_code}')
|
190 |
-
st.plotly_chart(fig)
|
191 |
-
|
192 |
-
# Articles Recommendations Page
|
193 |
-
elif page == "Articles Recommendations":
|
194 |
-
st.title("Articles Recommendations")
|
195 |
-
|
196 |
-
st.markdown("""
|
197 |
-
Get tailored recommendations for your customers based on their basket.
|
198 |
-
""")
|
199 |
-
|
200 |
-
partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
|
201 |
-
if partial_code:
|
202 |
-
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
|
203 |
-
else:
|
204 |
-
filtered_customers = df
|
205 |
-
customer_list = filtered_customers['CLIENTE'].unique()
|
206 |
-
customer_code = st.selectbox("Select Customer Code for Recommendations", [""] + list(customer_list))
|
207 |
-
|
208 |
-
if customer_code:
|
209 |
-
option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"])
|
210 |
-
|
211 |
-
if option == "By Current Basket":
|
212 |
-
st.write("Select the items and assign quantities for the basket:")
|
213 |
-
|
214 |
-
available_articles = productos['ARTICULO'].unique()
|
215 |
-
selected_articles = st.multiselect("Select Articles", available_articles)
|
216 |
-
|
217 |
-
quantities = {article: st.number_input(f"Quantity for {article}", min_value=0, step=1) for article in selected_articles}
|
218 |
-
|
219 |
-
if st.button("Calcular"):
|
220 |
-
new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
|
221 |
-
|
222 |
-
if new_basket:
|
223 |
-
def recomienda(new_basket):
|
224 |
-
tfidf = TfidfVectorizer()
|
225 |
-
tfidf_matrix = tfidf.fit_transform(cestas['Cestas'])
|
226 |
-
new_basket_tfidf = tfidf.transform([' '.join(new_basket)])
|
227 |
-
similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix)
|
228 |
-
similar_indices = similarities.argsort()[0][-3:]
|
229 |
-
|
230 |
-
recommendations_count = {}
|
231 |
-
total_similarity = 0
|
232 |
-
|
233 |
-
for idx in similar_indices:
|
234 |
-
sim_score = similarities[0][idx]
|
235 |
-
total_similarity += sim_score
|
236 |
-
products = cestas.iloc[idx]['Cestas'].split()
|
237 |
-
|
238 |
-
for product in products:
|
239 |
-
if product not in new_basket:
|
240 |
-
recommendations_count[product] = recommendations_count.get(product, 0) + sim_score
|
241 |
-
|
242 |
-
recommendations_with_prob = [(prod, score / total_similarity) for prod, score in recommendations_count.items()]
|
243 |
-
recommendations_with_prob.sort(key=lambda x: x[1], reverse=True)
|
244 |
-
|
245 |
-
recommendations_df = pd.DataFrame({
|
246 |
-
'ARTICULO': [r[0] for r in recommendations_with_prob],
|
247 |
-
'PROBABILIDAD': [r[1] for r in recommendations_with_prob]
|
248 |
-
})
|
249 |
-
return recommendations_df
|
250 |
-
|
251 |
-
recommendations_df = recomienda(new_basket)
|
252 |
-
st.dataframe(recommendations_df)
|
253 |
-
else:
|
254 |
-
st.warning("Please select at least one article and set its quantity.")
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
# import streamlit as st
|
259 |
-
# import pandas as pd
|
260 |
-
# import plotly.express as px
|
261 |
-
# import matplotlib.pyplot as plt
|
262 |
-
# import numpy as np
|
263 |
-
# import lightgbm as lgb
|
264 |
-
# from sklearn.feature_extraction.text import TfidfVectorizer
|
265 |
-
# from sklearn.metrics.pairwise import cosine_similarity
|
266 |
-
# from sklearn.metrics import mean_absolute_error, mean_squared_error
|
267 |
-
|
268 |
-
# # Page configuration
|
269 |
-
# st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
|
270 |
-
|
271 |
-
# # Load CSV files at the top
|
272 |
-
# df = pd.read_csv("df_clean.csv")
|
273 |
-
# nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
|
274 |
-
# euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
|
275 |
-
# ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',')
|
276 |
-
# customer_clusters = pd.read_csv('predicts/customer_clusters.csv') # Load the customer clusters here
|
277 |
-
# df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
|
278 |
-
|
279 |
-
# # Ensure customer codes are strings
|
280 |
-
# df['CLIENTE'] = df['CLIENTE'].astype(str)
|
281 |
-
# nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
|
282 |
-
# euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
|
283 |
-
# customer_clusters['cliente_id'] = customer_clusters['cliente_id'].astype(str) # Ensure customer IDs are strings
|
284 |
-
# fieles_df = pd.read_csv("clientes_relevantes.csv")
|
285 |
-
# cestas = pd.read_csv("cestas.csv")
|
286 |
-
# productos = pd.read_csv("productos.csv")
|
287 |
-
# df_agg_2024['cliente_id'] = df_agg_2024['cliente_id'].astype(str)
|
288 |
-
|
289 |
-
# # Convert all columns except 'CLIENTE' to float in euros_proveedor
|
290 |
-
# for col in euros_proveedor.columns:
|
291 |
-
# if col != 'CLIENTE':
|
292 |
-
# euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')
|
293 |
-
|
294 |
-
# # Check for NaN values after conversion
|
295 |
-
# if euros_proveedor.isna().any().any():
|
296 |
-
# st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")
|
297 |
-
|
298 |
-
# # Ignore the last two columns of df
|
299 |
-
# df = df.iloc[:, :-2]
|
300 |
-
|
301 |
-
# # Function to get supplier name
|
302 |
-
# def get_supplier_name(code):
|
303 |
-
# code = str(code) # Ensure code is a string
|
304 |
-
# name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
|
305 |
-
# return name[0] if len(name) > 0 else code
|
306 |
-
|
307 |
-
# # Function to create radar chart with square root transformation
|
308 |
-
# def radar_chart(categories, values, amounts, title):
|
309 |
-
# N = len(categories)
|
310 |
-
# angles = [n / float(N) * 2 * np.pi for n in range(N)]
|
311 |
-
# angles += angles[:1]
|
312 |
-
|
313 |
-
# fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
|
314 |
-
|
315 |
-
# # Apply square root transformation
|
316 |
-
# sqrt_values = np.sqrt(values)
|
317 |
-
# sqrt_amounts = np.sqrt(amounts)
|
318 |
-
|
319 |
-
# max_sqrt_value = max(sqrt_values)
|
320 |
-
# normalized_values = [v / max_sqrt_value for v in sqrt_values]
|
321 |
-
|
322 |
-
# # Adjust scaling for spend values
|
323 |
-
# max_sqrt_amount = max(sqrt_amounts)
|
324 |
-
# scaling_factor = 0.7 # Adjust this value to control how much the spend values are scaled up
|
325 |
-
# normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts]
|
326 |
-
|
327 |
-
# normalized_values += normalized_values[:1]
|
328 |
-
# ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)')
|
329 |
-
# ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
|
330 |
-
|
331 |
-
# normalized_amounts += normalized_amounts[:1]
|
332 |
-
# ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)')
|
333 |
-
# ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
|
334 |
-
|
335 |
-
# ax.set_xticks(angles[:-1])
|
336 |
-
# ax.set_xticklabels(categories, size=8, wrap=True)
|
337 |
-
# ax.set_ylim(0, 1)
|
338 |
-
|
339 |
-
# circles = np.linspace(0, 1, 5)
|
340 |
-
# for circle in circles:
|
341 |
-
# ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
|
342 |
-
|
343 |
-
# ax.set_yticklabels([])
|
344 |
-
# ax.spines['polar'].set_visible(False)
|
345 |
-
|
346 |
-
# plt.title(title, size=16, y=1.1)
|
347 |
-
# plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
|
348 |
-
|
349 |
-
# return fig
|
350 |
-
|
351 |
-
# # Main page design
|
352 |
-
# st.title("Welcome to Customer Insights App")
|
353 |
-
# st.markdown("""
|
354 |
-
# This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history.
|
355 |
-
# Use the tools below to dive deeper into your customer data.
|
356 |
-
# """)
|
357 |
-
|
358 |
-
# # Navigation menu
|
359 |
-
# page = st.selectbox("Select the tool you want to use", ["", "Customer Analysis", "Articles Recommendations"])
|
360 |
-
|
361 |
-
# # Home Page
|
362 |
-
# if page == "":
|
363 |
-
# st.markdown("## Welcome to the Customer Insights App")
|
364 |
-
# st.write("Use the dropdown menu to navigate between the different sections.")
|
365 |
-
|
366 |
-
# # Customer Analysis Page
|
367 |
-
# elif page == "Customer Analysis":
|
368 |
-
# st.title("Customer Analysis")
|
369 |
-
# st.markdown("Use the tools below to explore your customer data.")
|
370 |
-
|
371 |
-
# partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
|
372 |
-
# if partial_code:
|
373 |
-
# filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
|
374 |
-
# else:
|
375 |
-
# filtered_customers = df
|
376 |
-
# customer_list = filtered_customers['CLIENTE'].unique()
|
377 |
-
# customer_code = st.selectbox("Select Customer Code", customer_list)
|
378 |
-
|
379 |
-
# if st.button("Calcular"):
|
380 |
-
# if customer_code:
|
381 |
-
# # Find Customer's Cluster
|
382 |
-
# customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
|
383 |
-
|
384 |
-
# if not customer_match.empty:
|
385 |
-
# cluster = customer_match['cluster_id'].values[0]
|
386 |
-
# st.write(f"Customer {customer_code} belongs to cluster {cluster}")
|
387 |
-
|
388 |
-
# # Load the Corresponding Model
|
389 |
-
# model_path = f'models/modelo_cluster_{cluster}.txt'
|
390 |
-
# gbm = lgb.Booster(model_file=model_path)
|
391 |
-
# st.write(f"Loaded model for cluster {cluster}")
|
392 |
-
|
393 |
-
# # Inspect the model
|
394 |
-
# st.write("### Model Information:")
|
395 |
-
# st.write(f"Number of trees: {gbm.num_trees()}")
|
396 |
-
# st.write(f"Number of features: {gbm.num_feature()}")
|
397 |
-
# st.write("Feature names:")
|
398 |
-
# st.write(gbm.feature_name())
|
399 |
-
|
400 |
-
# # Load predict data for that cluster
|
401 |
-
# predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv')
|
402 |
-
|
403 |
-
# # Convert cliente_id to string
|
404 |
-
# predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
|
405 |
-
|
406 |
-
# st.write("### Predict Data DataFrame:")
|
407 |
-
# st.write(predict_data.head())
|
408 |
-
# st.write(f"Shape: {predict_data.shape}")
|
409 |
-
|
410 |
-
# # Filter for the specific customer
|
411 |
-
# customer_code_str = str(customer_code)
|
412 |
-
# customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
|
413 |
-
|
414 |
-
# # Add debug statements
|
415 |
-
# st.write(f"Unique customer IDs in predict data: {predict_data['cliente_id'].unique()}")
|
416 |
-
# st.write(f"Customer code we're looking for: {customer_code_str}")
|
417 |
-
|
418 |
-
# st.write("### Customer Data:")
|
419 |
-
# st.write(customer_data.head())
|
420 |
-
# st.write(f"Shape: {customer_data.shape}")
|
421 |
-
|
422 |
-
# if not customer_data.empty:
|
423 |
-
# # Define features consistently with the training process
|
424 |
-
# lag_features = [f'precio_total_lag_{lag}' for lag in range(1, 25)]
|
425 |
-
# features = lag_features + ['mes', 'marca_id_encoded', 'año', 'cluster_id']
|
426 |
-
|
427 |
-
# # Prepare data for prediction
|
428 |
-
# X_predict = customer_data[features]
|
429 |
-
|
430 |
-
# # Convert categorical features to 'category' dtype
|
431 |
-
# categorical_features = ['mes', 'marca_id_encoded', 'cluster_id']
|
432 |
-
# for feature in categorical_features:
|
433 |
-
# X_predict[feature] = X_predict[feature].astype('category')
|
434 |
-
|
435 |
-
# st.write("### Features for Prediction:")
|
436 |
-
# st.write(X_predict.head())
|
437 |
-
# st.write(f"Shape: {X_predict.shape}")
|
438 |
-
# st.write("Data types:")
|
439 |
-
# st.write(X_predict.dtypes)
|
440 |
-
|
441 |
-
# # Make Prediction for the selected customer
|
442 |
-
# y_pred = gbm.predict(X_predict, num_iteration=gbm.best_iteration)
|
443 |
-
# st.write("### Prediction Results:")
|
444 |
-
# st.write(f"Type of y_pred: {type(y_pred)}")
|
445 |
-
# st.write(f"Shape of y_pred: {y_pred.shape}")
|
446 |
-
# st.write("First few predictions:")
|
447 |
-
# st.write(y_pred[:5])
|
448 |
-
|
449 |
-
# # Reassemble the results
|
450 |
-
# results = customer_data[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
|
451 |
-
# results['ventas_predichas'] = y_pred
|
452 |
-
# st.write("### Results DataFrame:")
|
453 |
-
# st.write(results.head())
|
454 |
-
# st.write(f"Shape: {results.shape}")
|
455 |
-
|
456 |
-
# st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}")
|
457 |
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
# st.write(actual_sales.head())
|
462 |
-
# st.write(f"Shape: {actual_sales.shape}")
|
463 |
-
|
464 |
-
# if not actual_sales.empty:
|
465 |
-
# results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
|
466 |
-
# on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
|
467 |
-
# how='left')
|
468 |
-
# results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
|
469 |
-
# results['ventas_reales'].fillna(0, inplace=True)
|
470 |
-
# st.write("### Final Results DataFrame:")
|
471 |
-
# st.write(results.head())
|
472 |
-
# st.write(f"Shape: {results.shape}")
|
473 |
-
|
474 |
-
# # Calculate metrics only for non-null actual sales
|
475 |
-
# valid_results = results.dropna(subset=['ventas_reales'])
|
476 |
-
# if not valid_results.empty:
|
477 |
-
# mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
|
478 |
-
# mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
|
479 |
-
# rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
|
480 |
|
481 |
-
#
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
|
486 |
-
#
|
487 |
-
|
488 |
-
#
|
489 |
-
|
490 |
-
# else:
|
491 |
-
# st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
|
492 |
-
# else:
|
493 |
-
# st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")
|
494 |
|
495 |
-
#
|
496 |
-
|
497 |
-
# st.write(f"Shape of euros_proveedor: {euros_proveedor.shape}")
|
498 |
|
499 |
-
#
|
500 |
-
|
501 |
-
|
502 |
-
# all_manufacturers.index = all_manufacturers.index.astype(str)
|
503 |
|
504 |
-
#
|
505 |
-
|
506 |
-
# sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column
|
507 |
-
# sales_data.index = sales_data.index.astype(str)
|
508 |
|
509 |
-
#
|
510 |
-
|
511 |
|
512 |
-
#
|
513 |
-
|
514 |
-
# all_manufacturers = all_manufacturers.apply(pd.to_numeric, errors='coerce')
|
515 |
|
516 |
-
#
|
517 |
-
|
518 |
|
519 |
-
|
520 |
-
# top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
|
521 |
|
522 |
-
|
523 |
-
#
|
|
|
|
|
|
|
|
|
524 |
|
525 |
-
#
|
526 |
-
|
527 |
|
528 |
-
#
|
|
|
529 |
|
530 |
-
#
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
|
537 |
-
|
538 |
-
|
|
|
539 |
|
540 |
-
|
541 |
-
|
|
|
542 |
|
543 |
-
#
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
# manufacturers_to_show = non_zero_manufacturers
|
549 |
|
550 |
-
|
551 |
-
|
552 |
-
# manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
|
553 |
|
554 |
-
#
|
555 |
-
|
556 |
-
# st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
|
557 |
|
558 |
-
#
|
559 |
-
|
560 |
-
# st.pyplot(fig)
|
561 |
-
# else:
|
562 |
-
# st.warning("No data available to create the radar chart.")
|
563 |
|
564 |
-
|
565 |
-
|
|
|
|
|
566 |
|
567 |
-
#
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
# customer_code = str(customer_code).strip()
|
572 |
-
|
573 |
-
# if customer_code in ventas_clientes['codigo_cliente'].unique():
|
574 |
-
# st.write(f"Customer {customer_code} found in ventas_clientes")
|
575 |
-
# else:
|
576 |
-
# st.write(f"Customer {customer_code} not found in ventas_clientes")
|
577 |
-
|
578 |
-
# # Customer sales 2021-2024 (if data exists)
|
579 |
-
# sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
|
580 |
-
# if all(col in ventas_clientes.columns for col in sales_columns):
|
581 |
-
# customer_sales_data = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code]
|
582 |
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
|
599 |
|
600 |
-
#
|
601 |
-
|
602 |
-
|
603 |
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
|
608 |
-
#
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
# # Definición de la función recomienda
|
618 |
-
# def recomienda(new_basket):
|
619 |
-
# # Calcular la matriz TF-IDF
|
620 |
-
# tfidf = TfidfVectorizer()
|
621 |
-
# tfidf_matrix = tfidf.fit_transform(cestas['Cestas'])
|
622 |
-
|
623 |
-
# # Convertir la nueva cesta en formato TF-IDF
|
624 |
-
# new_basket_str = ' '.join(new_basket)
|
625 |
-
# new_basket_tfidf = tfidf.transform([new_basket_str])
|
626 |
-
|
627 |
-
# # Comparar la nueva cesta con las anteriores
|
628 |
-
# similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix)
|
629 |
-
|
630 |
-
# # Obtener los índices de las cestas más similares
|
631 |
-
# similar_indices = similarities.argsort()[0][-3:] # Las 3 más similares
|
632 |
-
|
633 |
-
# # Crear un diccionario para contar las recomendaciones
|
634 |
-
# recommendations_count = {}
|
635 |
-
# total_similarity = 0
|
636 |
-
|
637 |
-
# # Recomendar productos de cestas similares
|
638 |
-
# for idx in similar_indices:
|
639 |
-
# sim_score = similarities[0][idx]
|
640 |
-
# total_similarity += sim_score
|
641 |
-
# products = cestas.iloc[idx]['Cestas'].split()
|
642 |
-
|
643 |
-
# for product in products:
|
644 |
-
# if product.strip() not in new_basket: # Evitar recomendar lo que ya está en la cesta
|
645 |
-
# if product.strip() in recommendations_count:
|
646 |
-
# recommendations_count[product.strip()] += sim_score
|
647 |
-
# else:
|
648 |
-
# recommendations_count[product.strip()] = sim_score
|
649 |
|
650 |
-
#
|
651 |
-
|
652 |
-
#
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
#
|
661 |
-
|
662 |
-
|
663 |
-
#
|
664 |
-
|
665 |
-
|
666 |
-
#
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
#
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
#
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
#
|
693 |
-
|
694 |
-
|
695 |
-
#
|
696 |
-
|
697 |
-
#
|
698 |
-
|
699 |
-
|
700 |
-
#
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
#
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
#
|
712 |
-
|
713 |
-
# else:
|
714 |
-
# st.warning("Please select at least one article and set its quantity.")
|
715 |
-
# else:
|
716 |
-
# st.write(f"### Customer {customer_code} is not a loyal customer.")
|
717 |
-
# st.write("Select items and assign quantities for the basket:")
|
718 |
|
719 |
-
|
720 |
-
|
721 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
722 |
|
723 |
-
#
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
|
728 |
-
|
729 |
-
#
|
730 |
-
|
731 |
|
732 |
-
|
733 |
-
#
|
734 |
-
|
735 |
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
|
744 |
|
745 |
# Customer Analysis Page
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import numpy as np
|
6 |
import lightgbm as lgb
|
|
|
11 |
# Page configuration
|
12 |
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
|
13 |
|
14 |
+
# Load CSV files at the top
|
15 |
df = pd.read_csv("df_clean.csv")
|
16 |
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
|
17 |
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
|
18 |
ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',')
|
19 |
+
customer_clusters = pd.read_csv('predicts/customer_clusters.csv') # Load the customer clusters here
|
20 |
+
df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
|
21 |
|
22 |
# Ensure customer codes are strings
|
23 |
df['CLIENTE'] = df['CLIENTE'].astype(str)
|
24 |
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
|
25 |
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
|
26 |
+
customer_clusters['cliente_id'] = customer_clusters['cliente_id'].astype(str) # Ensure customer IDs are strings
|
27 |
fieles_df = pd.read_csv("clientes_relevantes.csv")
|
28 |
cestas = pd.read_csv("cestas.csv")
|
29 |
productos = pd.read_csv("productos.csv")
|
30 |
df_agg_2024['cliente_id'] = df_agg_2024['cliente_id'].astype(str)
|
31 |
|
32 |
+
# Convert all columns except 'CLIENTE' to float in euros_proveedor
|
33 |
for col in euros_proveedor.columns:
|
34 |
if col != 'CLIENTE':
|
35 |
euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')
|
36 |
|
37 |
+
# Check for NaN values after conversion
|
38 |
if euros_proveedor.isna().any().any():
|
39 |
st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")
|
40 |
|
41 |
+
# Ignore the last two columns of df
|
42 |
df = df.iloc[:, :-2]
|
43 |
|
44 |
# Function to get supplier name
|
45 |
def get_supplier_name(code):
|
46 |
+
code = str(code) # Ensure code is a string
|
47 |
name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
|
48 |
return name[0] if len(name) > 0 else code
|
49 |
|
50 |
+
# Function to create radar chart with square root transformation
|
51 |
def radar_chart(categories, values, amounts, title):
|
52 |
+
N = len(categories)
|
53 |
+
angles = [n / float(N) * 2 * np.pi for n in range(N)]
|
54 |
+
angles += angles[:1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
|
57 |
+
|
58 |
+
# Apply square root transformation
|
59 |
+
sqrt_values = np.sqrt(values)
|
60 |
+
sqrt_amounts = np.sqrt(amounts)
|
61 |
+
|
62 |
+
max_sqrt_value = max(sqrt_values)
|
63 |
+
normalized_values = [v / max_sqrt_value for v in sqrt_values]
|
64 |
+
|
65 |
+
# Adjust scaling for spend values
|
66 |
+
max_sqrt_amount = max(sqrt_amounts)
|
67 |
+
scaling_factor = 0.7 # Adjust this value to control how much the spend values are scaled up
|
68 |
+
normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts]
|
69 |
+
|
70 |
+
normalized_values += normalized_values[:1]
|
71 |
+
ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)')
|
72 |
+
ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
|
73 |
+
|
74 |
+
normalized_amounts += normalized_amounts[:1]
|
75 |
+
ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)')
|
76 |
+
ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
|
77 |
+
|
78 |
+
ax.set_xticks(angles[:-1])
|
79 |
+
ax.set_xticklabels(categories, size=8, wrap=True)
|
80 |
+
ax.set_ylim(0, 1)
|
81 |
+
|
82 |
+
circles = np.linspace(0, 1, 5)
|
83 |
+
for circle in circles:
|
84 |
+
ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
|
85 |
+
|
86 |
+
ax.set_yticklabels([])
|
87 |
+
ax.spines['polar'].set_visible(False)
|
88 |
+
|
89 |
+
plt.title(title, size=16, y=1.1)
|
90 |
+
plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
return fig
|
93 |
|
94 |
# Main page design
|
|
|
121 |
|
122 |
if st.button("Calcular"):
|
123 |
if customer_code:
|
124 |
+
# Find Customer's Cluster
|
125 |
customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
|
126 |
|
127 |
if not customer_match.empty:
|
128 |
cluster = customer_match['cluster_id'].values[0]
|
129 |
st.write(f"Customer {customer_code} belongs to cluster {cluster}")
|
130 |
|
131 |
+
# Load the Corresponding Model
|
132 |
model_path = f'models/modelo_cluster_{cluster}.txt'
|
133 |
gbm = lgb.Booster(model_file=model_path)
|
134 |
st.write(f"Loaded model for cluster {cluster}")
|
135 |
|
136 |
+
# Inspect the model
|
137 |
+
st.write("### Model Information:")
|
138 |
+
st.write(f"Number of trees: {gbm.num_trees()}")
|
139 |
+
st.write(f"Number of features: {gbm.num_feature()}")
|
140 |
+
st.write("Feature names:")
|
141 |
+
st.write(gbm.feature_name())
|
142 |
+
|
143 |
# Load predict data for that cluster
|
144 |
predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv')
|
145 |
+
|
146 |
+
# Convert cliente_id to string
|
147 |
predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
|
148 |
+
|
149 |
+
st.write("### Predict Data DataFrame:")
|
150 |
+
st.write(predict_data.head())
|
151 |
+
st.write(f"Shape: {predict_data.shape}")
|
152 |
|
153 |
# Filter for the specific customer
|
154 |
+
customer_code_str = str(customer_code)
|
155 |
+
customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
|
156 |
+
|
157 |
+
# Add debug statements
|
158 |
+
st.write(f"Unique customer IDs in predict data: {predict_data['cliente_id'].unique()}")
|
159 |
+
st.write(f"Customer code we're looking for: {customer_code_str}")
|
160 |
+
|
161 |
+
st.write("### Customer Data:")
|
162 |
+
st.write(customer_data.head())
|
163 |
+
st.write(f"Shape: {customer_data.shape}")
|
164 |
|
165 |
if not customer_data.empty:
|
166 |
+
# Define features consistently with the training process
|
167 |
lag_features = [f'precio_total_lag_{lag}' for lag in range(1, 25)]
|
168 |
features = lag_features + ['mes', 'marca_id_encoded', 'año', 'cluster_id']
|
169 |
+
|
170 |
+
# Prepare data for prediction
|
171 |
X_predict = customer_data[features]
|
172 |
|
173 |
# Convert categorical features to 'category' dtype
|
174 |
categorical_features = ['mes', 'marca_id_encoded', 'cluster_id']
|
175 |
for feature in categorical_features:
|
176 |
X_predict[feature] = X_predict[feature].astype('category')
|
177 |
+
|
178 |
+
st.write("### Features for Prediction:")
|
179 |
+
st.write(X_predict.head())
|
180 |
+
st.write(f"Shape: {X_predict.shape}")
|
181 |
+
st.write("Data types:")
|
182 |
+
st.write(X_predict.dtypes)
|
183 |
+
|
184 |
# Make Prediction for the selected customer
|
185 |
y_pred = gbm.predict(X_predict, num_iteration=gbm.best_iteration)
|
186 |
+
st.write("### Prediction Results:")
|
187 |
+
st.write(f"Type of y_pred: {type(y_pred)}")
|
188 |
+
st.write(f"Shape of y_pred: {y_pred.shape}")
|
189 |
+
st.write("First few predictions:")
|
190 |
+
st.write(y_pred[:5])
|
191 |
+
|
192 |
+
# Reassemble the results
|
193 |
results = customer_data[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
|
194 |
results['ventas_predichas'] = y_pred
|
195 |
+
st.write("### Results DataFrame:")
|
196 |
+
st.write(results.head())
|
197 |
+
st.write(f"Shape: {results.shape}")
|
198 |
+
|
199 |
+
st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}")
|
200 |
|
201 |
+
# Load actual data
|
202 |
+
actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code_str]
|
203 |
+
st.write("### Actual Sales DataFrame:")
|
204 |
+
st.write(actual_sales.head())
|
205 |
+
st.write(f"Shape: {actual_sales.shape}")
|
206 |
+
|
207 |
if not actual_sales.empty:
|
208 |
+
results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
|
209 |
+
on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
|
210 |
+
how='left')
|
|
|
|
|
211 |
results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
|
212 |
results['ventas_reales'].fillna(0, inplace=True)
|
213 |
+
st.write("### Final Results DataFrame:")
|
214 |
+
st.write(results.head())
|
215 |
+
st.write(f"Shape: {results.shape}")
|
216 |
+
|
217 |
+
# Calculate metrics only for non-null actual sales
|
218 |
valid_results = results.dropna(subset=['ventas_reales'])
|
219 |
if not valid_results.empty:
|
220 |
mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
|
221 |
mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
|
222 |
rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
|
223 |
|
224 |
+
st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
|
225 |
st.write(f"MAE: {mae:.2f}")
|
226 |
st.write(f"MAPE: {mape:.2f}%")
|
227 |
st.write(f"RMSE: {rmse:.2f}")
|
228 |
|
229 |
+
# Analysis of results
|
230 |
+
threshold_good = 100 # You may want to adjust this threshold
|
231 |
+
if mae < threshold_good:
|
232 |
+
st.success(f"Customer {customer_code} is performing well based on the predictions.")
|
233 |
+
else:
|
234 |
+
st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
|
235 |
+
else:
|
236 |
+
st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
st.write("### Debug Information for Radar Chart:")
|
239 |
+
st.write(f"Shape of customer_data: {customer_data.shape}")
|
240 |
+
st.write(f"Shape of euros_proveedor: {euros_proveedor.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
+
# Get percentage of units sold for each manufacturer
|
243 |
+
customer_df = df[df["CLIENTE"] == str(customer_code)] # Get the customer data
|
244 |
+
all_manufacturers = customer_df.iloc[:, 1:].T # Exclude CLIENTE column (manufacturers are in columns)
|
245 |
+
all_manufacturers.index = all_manufacturers.index.astype(str)
|
246 |
|
247 |
+
# Get total sales for each manufacturer from euros_proveedor
|
248 |
+
customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)]
|
249 |
+
sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column
|
250 |
+
sales_data.index = sales_data.index.astype(str)
|
|
|
|
|
|
|
|
|
251 |
|
252 |
+
# Remove the 'CLIENTE' row from sales_data to avoid issues with mixed types
|
253 |
+
sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
|
|
|
254 |
|
255 |
+
# Ensure all values are numeric
|
256 |
+
sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
|
257 |
+
all_manufacturers = all_manufacturers.apply(pd.to_numeric, errors='coerce')
|
|
|
258 |
|
259 |
+
# Sort manufacturers by percentage of units and get top 10
|
260 |
+
top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
|
|
|
|
|
261 |
|
262 |
+
# Sort manufacturers by total sales and get top 10
|
263 |
+
top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
|
264 |
|
265 |
+
# Combine top manufacturers from both lists and get up to 20 unique manufacturers
|
266 |
+
combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
|
|
|
267 |
|
268 |
+
# Filter out manufacturers that are not present in both datasets
|
269 |
+
combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
|
270 |
|
271 |
+
st.write(f"Number of combined top manufacturers: {len(combined_top)}")
|
|
|
272 |
|
273 |
+
if combined_top:
|
274 |
+
# Create a DataFrame with combined data for these top manufacturers
|
275 |
+
combined_data = pd.DataFrame({
|
276 |
+
'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
|
277 |
+
'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
|
278 |
+
}).fillna(0)
|
279 |
|
280 |
+
# Sort by units, then by sales
|
281 |
+
combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
|
282 |
|
283 |
+
# Filter out manufacturers with 0 units
|
284 |
+
non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
|
285 |
|
286 |
+
# If we have less than 3 non-zero manufacturers, add some zero-value ones
|
287 |
+
if len(non_zero_manufacturers) < 3:
|
288 |
+
zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
|
289 |
+
manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
|
290 |
+
else:
|
291 |
+
manufacturers_to_show = non_zero_manufacturers
|
292 |
|
293 |
+
values = manufacturers_to_show['units'].tolist()
|
294 |
+
amounts = manufacturers_to_show['sales'].tolist()
|
295 |
+
manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
|
296 |
|
297 |
+
st.write(f"### Results for top {len(manufacturers)} manufacturers:")
|
298 |
+
for manufacturer, value, amount in zip(manufacturers, values, amounts):
|
299 |
+
st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
|
300 |
|
301 |
+
if manufacturers: # Only create the chart if we have data
|
302 |
+
fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
|
303 |
+
st.pyplot(fig)
|
304 |
+
else:
|
305 |
+
st.warning("No data available to create the radar chart.")
|
|
|
306 |
|
307 |
+
else:
|
308 |
+
st.warning("No combined top manufacturers found.")
|
|
|
309 |
|
310 |
+
# Ensure codigo_cliente in ventas_clientes is a string
|
311 |
+
ventas_clientes['codigo_cliente'] = ventas_clientes['codigo_cliente'].astype(str).str.strip()
|
|
|
312 |
|
313 |
+
# Ensure customer_code is a string and strip any spaces
|
314 |
+
customer_code = str(customer_code).strip()
|
|
|
|
|
|
|
315 |
|
316 |
+
if customer_code in ventas_clientes['codigo_cliente'].unique():
|
317 |
+
st.write(f"Customer {customer_code} found in ventas_clientes")
|
318 |
+
else:
|
319 |
+
st.write(f"Customer {customer_code} not found in ventas_clientes")
|
320 |
|
321 |
+
# Customer sales 2021-2024 (if data exists)
|
322 |
+
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
|
323 |
+
if all(col in ventas_clientes.columns for col in sales_columns):
|
324 |
+
customer_sales_data = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
+
if not customer_sales_data.empty:
|
327 |
+
customer_sales = customer_sales_data[sales_columns].values[0]
|
328 |
+
years = ['2021', '2022', '2023']
|
329 |
|
330 |
+
fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
|
331 |
+
fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
|
332 |
+
st.plotly_chart(fig_sales)
|
333 |
+
else:
|
334 |
+
st.warning(f"No historical sales data found for customer {customer_code}")
|
335 |
+
else:
|
336 |
+
st.warning("Sales data for 2021-2023 not available in the dataset.")
|
337 |
+
else:
|
338 |
+
st.warning(f"No data found for customer {customer_code}. Please check the code.")
|
339 |
+
else:
|
340 |
+
st.warning("Please select a customer.")
|
341 |
|
342 |
|
343 |
+
# Customer Recommendations Page
|
344 |
+
elif page == "Articles Recommendations":
|
345 |
+
st.title("Articles Recommendations")
|
346 |
|
347 |
+
st.markdown("""
|
348 |
+
Get tailored recommendations for your customers based on their basket.
|
349 |
+
""")
|
350 |
|
351 |
+
# Campo input para cliente
|
352 |
+
partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
|
353 |
+
if partial_code:
|
354 |
+
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
|
355 |
+
else:
|
356 |
+
filtered_customers = df
|
357 |
+
customer_list = filtered_customers['CLIENTE'].unique()
|
358 |
+
customer_code = st.selectbox("Select Customer Code for Recommendations", [""] + list(customer_list))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
|
360 |
+
# Definición de la función recomienda
|
361 |
+
def recomienda(new_basket):
|
362 |
+
# Calcular la matriz TF-IDF
|
363 |
+
tfidf = TfidfVectorizer()
|
364 |
+
tfidf_matrix = tfidf.fit_transform(cestas['Cestas'])
|
365 |
+
|
366 |
+
# Convertir la nueva cesta en formato TF-IDF
|
367 |
+
new_basket_str = ' '.join(new_basket)
|
368 |
+
new_basket_tfidf = tfidf.transform([new_basket_str])
|
369 |
+
|
370 |
+
# Comparar la nueva cesta con las anteriores
|
371 |
+
similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix)
|
372 |
+
|
373 |
+
# Obtener los índices de las cestas más similares
|
374 |
+
similar_indices = similarities.argsort()[0][-3:] # Las 3 más similares
|
375 |
+
|
376 |
+
# Crear un diccionario para contar las recomendaciones
|
377 |
+
recommendations_count = {}
|
378 |
+
total_similarity = 0
|
379 |
+
|
380 |
+
# Recomendar productos de cestas similares
|
381 |
+
for idx in similar_indices:
|
382 |
+
sim_score = similarities[0][idx]
|
383 |
+
total_similarity += sim_score
|
384 |
+
products = cestas.iloc[idx]['Cestas'].split()
|
385 |
+
|
386 |
+
for product in products:
|
387 |
+
if product.strip() not in new_basket: # Evitar recomendar lo que ya está en la cesta
|
388 |
+
if product.strip() in recommendations_count:
|
389 |
+
recommendations_count[product.strip()] += sim_score
|
390 |
+
else:
|
391 |
+
recommendations_count[product.strip()] = sim_score
|
392 |
+
|
393 |
+
# Calcular la probabilidad relativa de cada producto recomendado
|
394 |
+
recommendations_with_prob = []
|
395 |
+
if total_similarity > 0: # Verificar que total_similarity no sea cero
|
396 |
+
recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
|
397 |
+
else:
|
398 |
+
print("No se encontraron similitudes suficientes para calcular probabilidades.")
|
399 |
+
|
400 |
+
recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) # Ordenar por puntuación
|
401 |
+
|
402 |
+
# Crear un nuevo DataFrame para almacenar las recomendaciones con descripciones y probabilidades
|
403 |
+
recommendations_df = pd.DataFrame(columns=['ARTICULO', 'DESCRIPCION', 'PROBABILIDAD'])
|
404 |
+
|
405 |
+
# Agregar las recomendaciones al DataFrame usando pd.concat
|
406 |
+
for product, prob in recommendations_with_prob:
|
407 |
+
# Buscar la descripción en el DataFrame de productos
|
408 |
+
description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
|
409 |
+
if not description.empty:
|
410 |
+
# Crear un nuevo DataFrame temporal para la recomendación
|
411 |
+
temp_df = pd.DataFrame({
|
412 |
+
'ARTICULO': [product],
|
413 |
+
'DESCRIPCION': [description.values[0]], # Obtener el primer valor encontrado
|
414 |
+
'PROBABILIDAD': [prob]
|
415 |
+
})
|
416 |
+
# Concatenar el DataFrame temporal al DataFrame de recomendaciones
|
417 |
+
recommendations_df = pd.concat([recommendations_df, temp_df], ignore_index=True)
|
418 |
+
|
419 |
+
return recommendations_df
|
420 |
+
|
421 |
+
# Comprobar si el cliente está en el CSV de fieles
|
422 |
+
is_fiel = customer_code in fieles_df['Cliente'].astype(str).values
|
|
|
|
|
|
|
|
|
|
|
423 |
|
424 |
+
if customer_code:
|
425 |
+
if is_fiel:
|
426 |
+
st.write(f"### Customer {customer_code} is a loyal customer.")
|
427 |
+
option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"])
|
428 |
+
|
429 |
+
if option == "By Purchase History":
|
430 |
+
st.warning("Option not available... aún")
|
431 |
+
elif option == "By Current Basket":
|
432 |
+
st.write("Select the items and assign quantities for the basket:")
|
433 |
+
|
434 |
+
# Mostrar lista de artículos disponibles
|
435 |
+
available_articles = productos['ARTICULO'].unique()
|
436 |
+
selected_articles = st.multiselect("Select Articles", available_articles)
|
437 |
+
|
438 |
+
# Crear inputs para ingresar las cantidades de cada artículo seleccionado
|
439 |
+
quantities = {}
|
440 |
+
for article in selected_articles:
|
441 |
+
quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
|
442 |
+
|
443 |
+
if st.button("Calcular"): # Añadimos el botón "Calcular"
|
444 |
+
# Crear una lista de artículos basada en la selección
|
445 |
+
new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
|
446 |
+
|
447 |
+
if new_basket:
|
448 |
+
# Procesar la lista para recomendar
|
449 |
+
recommendations_df = recomienda(new_basket)
|
450 |
+
|
451 |
+
if not recommendations_df.empty:
|
452 |
+
st.write("### Recommendations based on the current basket:")
|
453 |
+
st.dataframe(recommendations_df)
|
454 |
+
else:
|
455 |
+
st.warning("No recommendations found for the provided basket.")
|
456 |
+
else:
|
457 |
+
st.warning("Please select at least one article and set its quantity.")
|
458 |
+
else:
|
459 |
+
st.write(f"### Customer {customer_code} is not a loyal customer.")
|
460 |
+
st.write("Select items and assign quantities for the basket:")
|
461 |
+
|
462 |
+
# Mostrar lista de artículos disponibles
|
463 |
+
available_articles = productos['ARTICULO'].unique()
|
464 |
+
selected_articles = st.multiselect("Select Articles", available_articles)
|
465 |
|
466 |
+
# Crear inputs para ingresar las cantidades de cada artículo seleccionado
|
467 |
+
quantities = {}
|
468 |
+
for article in selected_articles:
|
469 |
+
quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
|
470 |
|
471 |
+
if st.button("Calcular"): # Añadimos el botón "Calcular"
|
472 |
+
# Crear una lista de artículos basada en la selección
|
473 |
+
new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
|
474 |
|
475 |
+
if new_basket:
|
476 |
+
# Procesar la lista para recomendar
|
477 |
+
recommendations_df = recomienda(new_basket)
|
478 |
|
479 |
+
if not recommendations_df.empty:
|
480 |
+
st.write("### Recommendations based on the current basket:")
|
481 |
+
st.dataframe(recommendations_df)
|
482 |
+
else:
|
483 |
+
st.warning("No recommendations found for the provided basket.")
|
484 |
+
else:
|
485 |
+
st.warning("Please select at least one article and set its quantity.")
|
486 |
|
487 |
|
488 |
# Customer Analysis Page
|