Spaces:
Sleeping
Sleeping
Update utils.py
Browse files
utils.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
import warnings
|
@@ -6,11 +7,50 @@ from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
|
|
6 |
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
from joblib import dump, load
|
8 |
from sklearn.preprocessing import normalize
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def recomienda_tf(new_basket, cestas, productos):
|
|
|
|
|
|
|
|
|
11 |
# Cargar la matriz TF y el modelo
|
12 |
-
tf_matrix = load(
|
13 |
-
count = load(
|
14 |
|
15 |
# Convertir la nueva cesta en formato TF (Term Frequency)
|
16 |
new_basket_str = ' '.join(new_basket)
|
@@ -86,5 +126,4 @@ def retroalimentacion(cestas, cesta_nueva):
|
|
86 |
dump(tf_matrix, tf_matrix_file)
|
87 |
|
88 |
|
89 |
-
return None
|
90 |
-
|
|
|
1 |
+
import os
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import warnings
|
|
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
from joblib import dump, load
|
9 |
from sklearn.preprocessing import normalize
|
10 |
+
import re
|
11 |
+
|
12 |
+
def get_next_version(file_prefix, folder='RecommendationFiles/'):
|
13 |
+
"""Find the latest version of a file and return the next version's filename."""
|
14 |
+
# Regular expression to match files like 'file_0001.joblib'
|
15 |
+
pattern = re.compile(rf"{file_prefix}_(\d+)\.joblib")
|
16 |
+
files = [f for f in os.listdir(folder) if pattern.match(f)]
|
17 |
+
|
18 |
+
# Extract version numbers from matching files
|
19 |
+
versions = [int(pattern.match(f).group(1)) for f in files]
|
20 |
+
|
21 |
+
# Determine the next version number
|
22 |
+
if versions:
|
23 |
+
next_version = max(versions) + 1
|
24 |
+
else:
|
25 |
+
next_version = 1 # If no versions exist, start with 1
|
26 |
+
|
27 |
+
# Return the next version filename
|
28 |
+
return f"{file_prefix}_{next_version:04d}.joblib"
|
29 |
+
|
30 |
+
def get_latest_version(file_prefix, folder='RecommendationFiles/'):
|
31 |
+
"""Find the latest version of a file to load."""
|
32 |
+
# Regular expression to match files like 'file_0001.joblib'
|
33 |
+
pattern = re.compile(rf"{file_prefix}_(\d+)\.joblib")
|
34 |
+
files = [f for f in os.listdir(folder) if pattern.match(f)]
|
35 |
+
|
36 |
+
# Extract version numbers from matching files
|
37 |
+
versions = [int(pattern.match(f).group(1)) for f in files]
|
38 |
+
|
39 |
+
if versions:
|
40 |
+
latest_version = max(versions)
|
41 |
+
return f"{file_prefix}_{latest_version:04d}.joblib"
|
42 |
+
else:
|
43 |
+
raise FileNotFoundError(f"No versions found for {file_prefix}")
|
44 |
+
|
45 |
|
46 |
def recomienda_tf(new_basket, cestas, productos):
|
47 |
+
|
48 |
+
tf_matrix_file = get_latest_version('count_matrix')
|
49 |
+
count_vectorizer_file = get_latest_version('count_vectorizer')
|
50 |
+
|
51 |
# Cargar la matriz TF y el modelo
|
52 |
+
tf_matrix = load(tf_matrix_file)
|
53 |
+
count = load(count_vectorizer_file)
|
54 |
|
55 |
# Convertir la nueva cesta en formato TF (Term Frequency)
|
56 |
new_basket_str = ' '.join(new_basket)
|
|
|
126 |
dump(tf_matrix, tf_matrix_file)
|
127 |
|
128 |
|
129 |
+
return None
|
|