Spaces:
Runtime error
Runtime error
File size: 14,202 Bytes
8366b03 2073756 8366b03 8d678a1 8366b03 4fd1b75 8366b03 89690cf 8366b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
from header import *
import os
import torch.nn.functional as F
from .ImageBind import *
from .ImageBind import data
from .modeling_llama import LlamaForCausalLM
from transformers import StoppingCriteria, StoppingCriteriaList
import torch
from torch.nn.utils import rnn
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops = [], encounters=1):
super().__init__()
self.stops = stops
self.ENCOUNTERS = encounters
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
stop_count = 0
for stop in self.stops:
stop_count = (stop == input_ids[0]).sum().item()
if stop_count >= self.ENCOUNTERS:
return True
return False
def build_one_instance(tokenizer, conversation):
text_list = []
turn_num = len(conversation)
input_ids, target_ids = [], []
for i in range(turn_num):
turn = conversation[i]
role = turn['from']
if i == 0: # the first human turn
assert role == 'human'
text = '</Img> ' + turn['value'] + '\n### Assistant:'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100]*len(one_input_id) # do not perform loss regression on human prompt
else:
if role == 'human':
text = 'Human: ' + turn['value'] + '\n### Assistant:'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100]*len(one_input_id)
elif role == 'gpt':
text = turn['value'] + '\n###'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id
else:
raise Exception('Wrong Role!!!')
text_list.append(text)
assert len(input_ids) == len(target_ids)
return text_list, input_ids, target_ids
def process_batch_instance(tokenizer, batch_of_conversations, max_tgt_len):
batch_input_ids, batch_target_ids = [], []
for conversation in batch_of_conversations:
_, one_input_ids, one_target_ids = build_one_instance(tokenizer, conversation)
batch_input_ids.append(torch.LongTensor(one_input_ids))
batch_target_ids.append(torch.LongTensor(one_target_ids))
input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
assert input_ids.size() == target_ids.size()
input_ids = input_ids[:,:max_tgt_len]
target_ids = target_ids[:,:max_tgt_len]
attention_mask = input_ids.ne(tokenizer.pad_token_id)
assert attention_mask.size() == input_ids.size()
return input_ids, target_ids, attention_mask.long()
PROMPT_START = '### Human: <Img>'
class OpenLLAMAPEFTModel(nn.Module):
'''LoRA for LLaMa model'''
def __init__(self, **args):
super(OpenLLAMAPEFTModel, self).__init__()
self.args = args
imagebind_ckpt_path = args['imagebind_ckpt_path']
vicuna_ckpt_path = args['vicuna_ckpt_path']
max_tgt_len = args['max_tgt_len']
stage = args['stage']
print (f'Initializing visual encoder from {imagebind_ckpt_path} ...')
self.visual_encoder, self.visual_hidden_size = \
imagebind_model.imagebind_huge(pretrained=True, store_path=imagebind_ckpt_path)
# free vision encoder
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder.eval()
print ('Visual encoder initialized.')
print (f'Initializing language decoder from {vicuna_ckpt_path} ...')
# add the lora module
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=self.args['lora_r'],
lora_alpha=self.args['lora_alpha'],
lora_dropout=self.args['lora_dropout'],
target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj']
)
self.llama_model = LlamaForCausalLM.from_pretrained(vicuna_ckpt_path, use_auth_token=os.environ['API_TOKEN'])
self.llama_model = get_peft_model(self.llama_model, peft_config)
self.llama_model.print_trainable_parameters()
self.llama_tokenizer = LlamaTokenizer.from_pretrained(vicuna_ckpt_path, use_fast=False, use_auth_token=os.environ['API_TOKEN'])
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
self.llama_tokenizer.padding_side = "right"
print ('Language decoder initialized.')
self.llama_proj = nn.Linear(
self.visual_hidden_size, self.llama_model.config.hidden_size
)
self.max_tgt_len = max_tgt_len
self.device = torch.cuda.current_device() if torch.cuda.is_available() else torch.device('cpu')
def encode_video(self, video_paths):
inputs = {ModalityType.VISION: data.load_and_transform_video_data(video_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
video_embeds = embeddings[ModalityType.VISION] # bsz x 1024
inputs_llama = self.llama_proj(video_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def encode_audio(self, audio_paths):
inputs = {ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
audio_embeds = embeddings[ModalityType.AUDIO] # bsz x 1024
inputs_llama = self.llama_proj(audio_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def encode_thermal(self, thermal_paths):
inputs = {ModalityType.THERMAL: data.load_and_transform_thermal_data(thermal_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
image_embeds = embeddings['thermal'] # bsz x 1024
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def encode_image(self, image_paths):
inputs = {ModalityType.VISION: data.load_and_transform_vision_data(image_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
image_embeds = embeddings['vision'] # bsz x 1024
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def prompt_wrap(self, img_embeds, input_ids, target_ids, attention_mask):
'''
input_ids, target_ids, attention_mask: bsz x s2
'''
input_ids = input_ids.to(self.device) # bsz x s2
target_ids = target_ids.to(self.device) # bsz x s2
attention_mask = attention_mask.to(self.device) # bsz x s2
batch_size = img_embeds.shape[0]
p_before = PROMPT_START
p_before_tokens = self.llama_tokenizer(p_before,
return_tensors="pt", add_special_tokens=False).to(self.device)
# peft model need deeper call
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
p_after_embeds = self.llama_model.model.model.embed_tokens(input_ids).expand(batch_size, -1, -1) # bsz x s2 x embed_dim
bos = torch.ones([batch_size, 1],
dtype=p_before_tokens.input_ids.dtype,
device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, img_embeds, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
# create targets
empty_targets = (
torch.ones([batch_size, 1+p_before_embeds.size()[1]+1], # 1 (bos) + s1 + 1 (image vector)
dtype=torch.long).to(self.device).fill_(-100)
) # bsz x (1 + s1 + 1)
targets = torch.cat([empty_targets, target_ids], dim=1) # bsz x (1 + s1 + 1 + s2)
assert inputs_embeds.size()[1] == targets.size()[1]
atts_prefix = torch.ones([batch_size, 1+p_before_embeds.size()[1]+1], dtype=torch.long).to(self.device) # bsz x (1 + s1 +1)
attention_mask = torch.cat([atts_prefix, attention_mask], dim=1)
assert attention_mask.size() == targets.size() # bsz x (1 + s1 + 1 + s2)
return inputs_embeds, targets, attention_mask
def forward(self, inputs):
image_paths = inputs['image_paths']
img_embeds, _ = self.encode_image(image_paths)
output_texts = inputs['output_texts']
input_ids, target_ids, attention_mask = process_batch_instance(self.llama_tokenizer, output_texts, self.max_tgt_len)
inputs_embeds, targets, attention_mask = self.prompt_wrap(img_embeds, input_ids, target_ids, attention_mask)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
# calculate the token accuarcy
chosen_tokens = torch.max(outputs.logits, dim=-1)[1][:, 1:-1] # [B, S-1]
labels = targets[:, 2:]
gen_acc = (chosen_tokens.reshape(-1) == labels.reshape(-1)).to(torch.long) # [B*S]
valid_mask = (labels != -100).reshape(-1)
valid_tokens = gen_acc & valid_mask # [B*S]
gen_acc = valid_tokens.sum().item() / valid_mask.sum().item()
return loss, gen_acc
def extract_multimodal_feature(self, inputs):
features = []
if inputs['image_paths']:
image_embeds, _ = self.encode_image(inputs['image_paths'])
features.append(image_embeds)
if inputs['audio_paths']:
audio_embeds, _ = self.encode_audio(inputs['audio_paths'])
features.append(audio_embeds)
if inputs['video_paths']:
video_embeds, _ = self.encode_video(inputs['video_paths'])
features.append(video_embeds)
if inputs['thermal_paths']:
thermal_embeds, _ = self.encode_thermal(inputs['thermal_paths'])
features.append(thermal_embeds)
feature_embeds = torch.cat(features).sum(dim=0).unsqueeze(0)
return feature_embeds
def prepare_generation_embedding(self, inputs):
prompt = inputs['prompt']
if len(inputs['modality_embeds']) == 1:
feature_embeds = inputs['modality_embeds'][0]
else:
feature_embeds = self.extract_multimodal_feature(inputs)
inputs['modality_embeds'].append(feature_embeds)
batch_size = feature_embeds.shape[0]
p_before = PROMPT_START
p_before_tokens = self.llama_tokenizer(p_before,
return_tensors="pt", add_special_tokens=False).to(self.device)
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
text = '</Img> ' + prompt + '\n### Assistant:'
p_after_tokens = self.llama_tokenizer(text, add_special_tokens=False, return_tensors='pt').to(self.device)
p_after_embeds = self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
bos = torch.ones([batch_size, 1],
dtype=p_before_tokens.input_ids.dtype,
device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, feature_embeds, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
return inputs_embeds
def generate(self, inputs):
'''
inputs = {
'image_paths': optional,
'audio_paths': optional
'video_paths': optional
'thermal_paths': optional
'mode': generation mode,
'prompt': human input prompt,
'max_tgt_len': generation length,
'top_p': top_p,
'temperature': temperature
'modality_embeds': None or torch.tensor
'modality_cache': save the image cache
}
'''
input_embeds = self.prepare_generation_embedding(inputs)
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=[2277], encounters=1)])
outputs = self.llama_model.generate(
inputs_embeds=input_embeds,
max_new_tokens=inputs['max_tgt_len'],
top_p=inputs['top_p'],
temperature=inputs['temperature'],
do_sample=True,
use_cache=True,
stopping_criteria=stopping_criteria,
)
output_text = self.llama_tokenizer.decode(outputs[0][:-2], skip_special_tokens=True)
return output_text
|