Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
import gspread | |
from google.oauth2.service_account import Credentials | |
import ast | |
import requests | |
import pandas as pd | |
import boto3 | |
from datetime import datetime | |
import json | |
# Define the scope | |
start = False | |
starting_position = [] | |
tradeHistory_positions = [] | |
s3 = boto3.resource( | |
service_name = 's3', | |
region_name = 'ap-south-1', | |
aws_access_key_id = 'AKIA3TD2SOLYZML62HJR', | |
aws_secret_access_key ='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' | |
) | |
obj = s3.Bucket('usdsmcoinmdata').Object('copyLeaderboard_trade_history.csv').get() | |
df = pd.read_csv(obj['Body'],index_col=False) | |
df2 = pd.read_csv('df.csv') | |
def convert_str_to_list_or_keep(value): | |
if isinstance(value, str): | |
try: | |
return ast.literal_eval(value) | |
except (SyntaxError, ValueError): | |
return value | |
else: | |
return value | |
df = df.apply(lambda col: col.map(convert_str_to_list_or_keep)) | |
df2 = df2.apply(lambda col: col.map(convert_str_to_list_or_keep)) | |
df['positionClosed'] = False | |
print(df) | |
uid_input = int(st.text_input("Enter U_IDs to filter")) | |
option = st.radio("Choose an option:", ["Show Position History", "Show Live Positions"]) | |
if df is not None and uid_input: | |
if option == "Show Position History": | |
st.title("Position History Viewer") | |
# Display starting positions with clickable rows | |
st.header("Starting Positions") | |
filtered_df = df[df['U_IDs'] == uid_input].copy() | |
print("filtered df",filtered_df) | |
if not filtered_df.empty: | |
trade_list = filtered_df['trade_history'].iloc[0] | |
else: | |
st.write("No data found for the provided U_ID.") | |
unique_lists = [] | |
def get_amounts_from_positions_and_closed_trades(data): | |
print("revheeeeeeeeeeeeeeeegfeggggggggggggg") | |
print('data',data) | |
# Check if 'Modified' key exists and extract amounts | |
if 'Modified' in data: | |
modified_positions = data['Modified'] | |
print("reeeeeegggggggggggggg33") | |
print(modified_positions) | |
print(type(modified_positions)) | |
# modified_positions = modified_positions[0] | |
if isinstance(modified_positions, dict) and 'amount' in modified_positions: | |
print("reafffffffff000000000") | |
amount = modified_positions.get('amount') | |
if isinstance(amount, (int, float)): # Check if amount is a number | |
amounts =amount | |
# Check if 'ClosedTrades' key exists and extract amounts | |
if 'ClosedTrades' in data: | |
closed_trades = data['ClosedTrades'] | |
closed_trades =closed_trades[0] | |
if isinstance(closed_trades, dict) and 'amount' in closed_trades: | |
amount = closed_trades.get('amount') | |
if isinstance(amount, (int, float)): # Check if amount is a number | |
amounts = amount | |
return amounts | |
def get_symbols_from_positions_and_closed_trades(data): | |
# Check if 'Modified' key exists and extract symbols | |
if 'Modified' in data: | |
modified_positions = data['Modified'] | |
# modified_positions =modified_positions | |
if isinstance(modified_positions, dict) and 'symbol' in modified_positions: | |
symbol = modified_positions['symbol'] | |
# Check if 'ClosedTrades' key exists and extract symbols | |
if 'ClosedTrades' in data: | |
closed_trades = data['ClosedTrades'] | |
closed_trades =closed_trades[0] | |
if isinstance(closed_trades, dict) and 'symbol' in closed_trades: | |
symbol = closed_trades['symbol'] | |
return symbol | |
for i in range(len(trade_list)): | |
if trade_list[i]=="none": | |
continue | |
if not trade_list: # Check if the trade_list is empty | |
st.header("No data found, this may not be in the leaderboard") | |
if start ==False: | |
st.subheader(f"Data is from {datetime.now()}") | |
start =True | |
foundCLosed = False | |
changeInAmount = 0 | |
if 'symbol' in trade_list[i]: | |
symbol = trade_list[i]['symbol'] | |
side ="buy" if float(trade_list[i]['amount'])>0 else "sell" | |
amount = trade_list[i]['amount'] | |
symbol = trade_list[i]['symbol'] | |
trade_list[i]['side'] =side | |
trade_list[i]['changeInAmount'] = changeInAmount | |
trade_list[i]['i'] = i | |
unique_lists.append({"position":trade_list[i]}) | |
trade_list[i] = "none" | |
else: | |
if 'positions' in trade_list[i]: | |
reached = False | |
# Collect necessary data first before modifying the dictionary | |
for k, v in list(trade_list[i].items()): # Convert to a list to avoid modifying during iteration | |
for entry in v: | |
if 'NewPosition' in entry: | |
new_position = entry.get('NewPosition', {}) | |
# Extract symbol and amount | |
symbol = new_position.get('symbol') | |
amount = new_position.get('amount') | |
# if start==False: | |
# start_time = new_position.get('updateTime') | |
# year = start_time[0] | |
# month = start_time[1] | |
# day = start_time[2] | |
# hour =start_time[3] | |
# minute =start_time[4] | |
# seconds = start_time[5] | |
# dt = datetime(year, month, day, hour, minute, seconds) | |
# human_readable_format = dt.strftime('%B %d, %Y, %I:%M:%S %p') | |
# st.subheader(f"Data from {human_readable_format}") | |
# start=True | |
# if start==False: | |
# | |
# start =True | |
side = "buy" if amount > 0 else "sell" | |
new_position['side'] = side | |
new_position['changeInAmount'] = changeInAmount | |
new_position['i'] = i | |
# Update the entry with the modified 'NewPosition' | |
entry['NewPosition'] = new_position | |
# Append the updated trade_list[i] to unique_lists | |
unique_lists.append(trade_list[i]) | |
reached = True | |
# Now safely modify the dictionary after iteration is complete | |
if reached: | |
trade_list[i] = "none" | |
# Now safely modify the dictionary after iteration is complete | |
for j in range(i+1, len(trade_list)): | |
if trade_list[j] == "none": | |
continue | |
if 'positions' in trade_list[j] and isinstance(trade_list[j]['positions'], list): | |
for position in trade_list[j]['positions']: | |
# Check if 'Modified' is in the position and is a dict | |
if 'Modified' in position and isinstance(position['Modified'], dict): | |
# if start==False: | |
# for k,v in position.items(): | |
# start_time = v['updateTime'] | |
# year = start_time[0] | |
# month = start_time[1] | |
# day = start_time[2] | |
# hour =start_time[3] | |
# minute =start_time[4] | |
# seconds = start_time[5] | |
# dt = datetime(year, month, day, hour, minute, seconds) | |
# human_readable_format = dt.strftime('%d-%m-%Y %H:%M:%S') | |
# st.subheader(f"Data from {human_readable_format}") | |
# start=True | |
modified_amount = get_amounts_from_positions_and_closed_trades(position) | |
modified_symbol = get_symbols_from_positions_and_closed_trades(position) | |
if modified_amount > 0: | |
modified_side = "buy" | |
else: | |
modified_side = "sell" | |
if symbol == modified_symbol and side == modified_side: | |
if start ==False: | |
st.header(f"Data is from {datetime.now}") | |
start =True | |
position['Modified']['side'] = modified_side | |
position['Modified']['changeInAmount'] = float(amount) - modified_amount if modified_amount < 0 else modified_amount - float(amount) | |
position['Modified']['i'] = i | |
amount = modified_amount | |
unique_lists.append(trade_list[j]) | |
trade_list[j] = "none" | |
# Check if 'ClosedTrades' is in the position and is a tuple | |
if 'ClosedTrades' in position and isinstance(position['ClosedTrades'], tuple): | |
if start ==False: | |
st.header(f"Data is from {datetime.now}") | |
start =True | |
foundCLosed = False | |
closed_trades_tuple = position['ClosedTrades'] | |
closed_trades_dict = { | |
'trade_info': closed_trades_tuple[0], | |
'side': closed_trades_tuple[1] | |
} | |
closed_amount = get_amounts_from_positions_and_closed_trades(position) | |
closed_symbol = get_symbols_from_positions_and_closed_trades(position) | |
if closed_amount > 0: | |
closed_side = "buy" | |
else: | |
closed_side = "sell" | |
if symbol == closed_symbol and side == closed_side: | |
# if start==False: | |
# for k,v in position.items(): | |
# start_time = v['updateTime'] | |
# start =True | |
closed_trades_dict['side'] = closed_side | |
trade_info = closed_trades_dict['trade_info'] | |
trade_info['changeInAmount'] = float(amount) - closed_amount if closed_amount < 0 else closed_amount - float(amount) | |
amount = closed_amount | |
closed_trades_dict['trade_info']['i'] = i # Store index 'i' inside 'ClosedTrades' | |
closed_trades_dict['trade_info']['closed'] = True | |
# Append the updated trade_list[j] to unique_lists | |
unique_lists.append(trade_list[j]) | |
trade_list[j] = "none" | |
foundCLosed = True | |
break | |
# Break the inner loop if a closed trade was found | |
if foundCLosed: | |
break | |
for k in range(len(unique_lists)): | |
data = unique_lists[k] | |
if k ==0: | |
if 'positions' in data: | |
if isinstance(data['positions'], list): | |
for a in data['positions']: | |
if 'NewPosition' in a: | |
position_data = a['NewPosition'] | |
starting_position.append(position_data) | |
tradeHistory_positions.append(position_data) | |
else: | |
if 'position' in data: | |
position_data =data['position'] | |
starting_position.append(position_data) | |
tradeHistory_positions.append(position_data) | |
if 'positions' in data: | |
if isinstance(data['positions'],list): | |
for a in data['positions']: | |
if 'ClosedTrades' in a: | |
position_data = a['ClosedTrades'][0] | |
tradeHistory_positions.append(position_data) | |
if 'positions' in data: | |
if isinstance(data['positions'],list): | |
for a in data['positions']: | |
if 'Modified' in a: | |
position_data = a['Modified'] | |
tradeHistory_positions.append(position_data) | |
unique_lists =[] | |
elif option == "Show Live Positions": | |
filtered_df2 = df2[df2['U_IDs'] == uid_input] | |
if not filtered_df2.empty: | |
positions_list = filtered_df2['Positions'].iloc[0] # Extract the first match | |
# Convert the list of dictionaries to a DataFrame | |
if isinstance(positions_list, list) and positions_list: | |
positions_df = pd.DataFrame(positions_list) | |
st.subheader("Live Positions") | |
st.dataframe(positions_df) | |
else: | |
st.write("No live positions data available for the given U_ID.") | |
# data3 = sheet3.get_all_values() | |
# headers3 = data3.pop(0) | |
# df3 = pd.DataFrame(data3, columns=headers3) | |
# filtered_df3 = df3[df3['U_IDs'] == uid_input] | |
# st.subheader("Performace") | |
# st.dataframe(filtered_df3) | |
def show_position_history(selected_position): | |
st.header(f"History for {selected_position}") | |
# Filter trade history for the selected position | |
position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position] | |
if position_history: | |
df_history = pd.DataFrame(position_history) | |
df_history['changeInAmount'] = pd.to_numeric(df_history['changeInAmount'], errors='coerce') | |
df_history['markPrice'] = pd.to_numeric(df_history['markPrice'], errors='coerce') | |
df_history['entryPrice'] = pd.to_numeric(df_history['entryPrice'], errors='coerce') | |
df_history['amount'] = pd.to_numeric(df_history['amount'],errors='coerce') | |
# Replace NaN with 0 or handle as required | |
df_history.fillna(0, inplace=True) | |
# Update the global timestamp with the last update from history | |
columns_to_check = [ | |
'symbol', 'side', 'amount', 'changeInAmount', 'markPrice', | |
'entryPrice', 'pnl', 'roe', 'leverage', 'updateTime', | |
'tradeType', 'stopLossPrice', 'takeProfitPrice', 'weightedScoreRatio' | |
] | |
# Adding missing columns with None as default | |
for column in columns_to_check: | |
if column not in df_history.columns: | |
df_history[column] = None | |
# Create a transformed DataFrame for display | |
df_transformed = pd.DataFrame({ | |
'Pair/Asset': df_history['symbol'], | |
'is long': df_history['side'], | |
'Current size after change': df_history['amount'], | |
'Change in size in Asset': df_history['changeInAmount'], | |
'Change in size in USDT': df_history['changeInAmount'] * -(df_history['markPrice']), | |
'Entry price': df_history['entryPrice'], | |
'Exit price': df_history['markPrice'], | |
'pnl in usdt': df_history['pnl'], | |
'pnl in %': df_history['roe'], | |
'Leverage': df_history['leverage'], | |
# 'updatedTime': df_history['updateTime'], | |
'Trade Type': df_history['tradeType'], # New field | |
'Stop Loss Price': df_history['stopLossPrice'], # New field | |
'Take Profit Price': df_history['takeProfitPrice'], # New field | |
'Weighted Score Ratio': df_history['weightedScoreRatio'], # New field | |
# 'Transaction Value in USDT': df_history['amount'] * df_history['markPrice'], # New calculation | |
'Profit/Loss Ratio': (df_history['markPrice'] - df_history['entryPrice']) / df_history['entryPrice'] # New calculation | |
}) | |
if 'closed' in df_history.columns: | |
df_transformed['Position closed'] = df_history['closed'] | |
st.dataframe(df_transformed) | |
# Add the update timestamp to the transformed DataFrame | |
else: | |
st.write("No history found for this position.") | |
def lastUpdated(selected_position): | |
position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position] | |
return position_history[-1]['updateTime'] | |
def isClosed(selected_position): | |
# Filter trade history for the selected position | |
position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position] | |
# Check if there are any records for the selected position | |
if not position_history: | |
return False | |
# Get the most recent entry for the selected position | |
last_entry = position_history[-1] | |
# Check if the 'closed' key exists and if it indicates the position is closed | |
return last_entry.get('closed', False) | |
def main(): | |
df_starting = pd.DataFrame(starting_position) | |
for index, row in df_starting.iterrows(): | |
side = True if float(row['amount']) > 0 else False | |
is_closed = isClosed(row['i']) | |
# Generate a unique key for the button | |
button_key = f"position_{row['i']}" | |
# Display a button for each trade position | |
if st.button( | |
f"{row['symbol']} : Long: {side}, Entry Price: {row['entryPrice']}, " | |
f"Market Price: {row['markPrice']}, Amount: {row['amount']}, " | |
f"Leverage: {row['leverage']}, isClosed: {is_closed}", | |
key=button_key | |
): | |
show_position_history(row['i']) | |
if __name__ == "__main__": | |
main() | |