Spaces:
Sleeping
Sleeping
File size: 1,608 Bytes
3e8ed31 89002be 3e8ed31 42d7cb6 89002be c221aa8 89002be 3e8ed31 89002be 3e8ed31 dd8b6dd 3e8ed31 42d7cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import token
import tokenize
import gradio as gr
from datasets import load_dataset
from transformers import AutoTokenizer
def ReturnTokens(dataset_name, tokenizer_name="openai-community/gpt2", split="train"):
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
dataset = load_dataset(dataset_name, split=split)
def count_tokens(examples):
return sum(len(tokenizer.tokenize(example)) for example in examples)
total_tokens = 0
for field in dataset[0].keys():
total_tokens += count_tokens(dataset[field])
return total_tokens
with gr.Blocks(title="Dataset token counter") as app:
gr.Markdown("# Token Counter")
with gr.Row():
prompt = gr.Textbox(label="Dataset", elem_id="dataset", info="", placeholder="")
tokenizer = gr.Textbox(label="Tokenizer", elem_id="tokenizer", info="", placeholder="openai-community/gpt2", value="openai-community/gpt2")
split = gr.Textbox(label="Split (default: train)", elem_id="split", info="", placeholder="train", value="train")
tokens = gr.Label(label="Tokens", elem_id="tokens")
prompt.submit().success(
ReturnTokens,
inputs=[prompt,tokenizer,split],
outputs=[tokens]
)
gr.on(
triggers=[
prompt.submit,
tokenizer.submit,
split.submit,
],
fn=ReturnTokens,
inputs=[
prompt,
tokenizer,
split
],
outputs=[tokens],
api_name="run",
)
app.launch() |