import io # import asyncio import os import ssl from contextlib import closing from typing import Optional, Tuple import datetime # import promptlayer # promptlayer.api_key = os.environ.get("PROMPTLAYER_KEY") import boto3 import gradio as gr import requests # UNCOMMENT TO USE WHISPER import warnings import whisper from langchain import ConversationChain, LLMChain from langchain.agents import load_tools, initialize_agent from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.llms import OpenAI # from promptlayer.langchain.llms import OpenAI from threading import Lock # Console to variable from io import StringIO import sys import re from openai.error import AuthenticationError, InvalidRequestError, RateLimitError # Pertains to Express-inator functionality from langchain.prompts import PromptTemplate from polly_utils import PollyVoiceData, NEURAL_ENGINE from azure_utils import AzureVoiceData # Pertains to question answering functionality from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores.faiss import FAISS from langchain.docstore.document import Document from langchain.chains.question_answering import load_qa_chain news_api_key = os.environ["NEWS_API_KEY"] tmdb_bearer_token = os.environ["TMDB_BEARER_TOKEN"] TOOLS_LIST = ['serpapi', 'wolfram-alpha', 'pal-math', 'pal-colored-objects', 'news-api'] #'google-search','news-api','tmdb-api','open-meteo-api' TOOLS_DEFAULT_LIST = ['serpapi', 'wolfram-alpha', 'pal-math', 'pal-colored-objects', 'news-api'] BUG_FOUND_MSG = "Error in the return response. Please try again." # AUTH_ERR_MSG = "Please paste your OpenAI key from openai.com to use this application. It is not necessary to hit a button or key after pasting it." AUTH_ERR_MSG = "Please paste your OpenAI key from openai.com to use this application. " MAX_TOKENS = 2048 LOOPING_TALKING_HEAD = "videos/Masahiro.mp4" TALKING_HEAD_WIDTH = "192" MAX_TALKING_HEAD_TEXT_LENGTH = 155 # Pertains to Express-inator functionality NUM_WORDS_DEFAULT = 0 MAX_WORDS = 400 FORMALITY_DEFAULT = "N/A" TEMPERATURE_DEFAULT = 0.5 EMOTION_DEFAULT = "N/A" LANG_LEVEL_DEFAULT = "N/A" TRANSLATE_TO_DEFAULT = "N/A" LITERARY_STYLE_DEFAULT = "N/A" PROMPT_TEMPLATE = PromptTemplate( input_variables=["original_words", "num_words", "formality", "emotions", "lang_level", "translate_to", "literary_style"], template="Restate {num_words}{formality}{emotions}{lang_level}{translate_to}{literary_style}the following: \n{original_words}\n", ) POLLY_VOICE_DATA = PollyVoiceData() AZURE_VOICE_DATA = AzureVoiceData() # Pertains to WHISPER functionality WHISPER_DETECT_LANG = "Detect language" # UNCOMMENT TO USE WHISPER warnings.filterwarnings("ignore") WHISPER_MODEL = whisper.load_model("tiny") print("WHISPER_MODEL", WHISPER_MODEL) # UNCOMMENT TO USE WHISPER def transcribe(aud_inp, whisper_lang): if aud_inp is None: return "" aud = whisper.load_audio(aud_inp) aud = whisper.pad_or_trim(aud) mel = whisper.log_mel_spectrogram(aud).to(WHISPER_MODEL.device) _, probs = WHISPER_MODEL.detect_language(mel) options = whisper.DecodingOptions() if whisper_lang != WHISPER_DETECT_LANG: whisper_lang_code = POLLY_VOICE_DATA.get_whisper_lang_code(whisper_lang) options = whisper.DecodingOptions(language=whisper_lang_code) result = whisper.decode(WHISPER_MODEL, mel, options) print("result.text", result.text) result_text = "" if result and result.text: result_text = result.text return result_text # Temporarily address Wolfram Alpha SSL certificate issue ssl._create_default_https_context = ssl._create_unverified_context # TEMPORARY FOR TESTING def transcribe_dummy(aud_inp_tb, whisper_lang): if aud_inp_tb is None: return "" # aud = whisper.load_audio(aud_inp) # aud = whisper.pad_or_trim(aud) # mel = whisper.log_mel_spectrogram(aud).to(WHISPER_MODEL.device) # _, probs = WHISPER_MODEL.detect_language(mel) # options = whisper.DecodingOptions() # options = whisper.DecodingOptions(language="ja") # result = whisper.decode(WHISPER_MODEL, mel, options) result_text = "Whisper will detect language" if whisper_lang != WHISPER_DETECT_LANG: whisper_lang_code = POLLY_VOICE_DATA.get_whisper_lang_code(whisper_lang) result_text = f"Whisper will use lang code: {whisper_lang_code}" print("result_text", result_text) return aud_inp_tb # Pertains to Express-inator functionality def transform_text(desc, express_chain, num_words, formality, anticipation_level, joy_level, trust_level, fear_level, surprise_level, sadness_level, disgust_level, anger_level, lang_level, translate_to, literary_style): num_words_prompt = "" if num_words and int(num_words) != 0: num_words_prompt = "using up to " + str(num_words) + " words, " # Change some arguments to lower case formality = formality.lower() anticipation_level = anticipation_level.lower() joy_level = joy_level.lower() trust_level = trust_level.lower() fear_level = fear_level.lower() surprise_level = surprise_level.lower() sadness_level = sadness_level.lower() disgust_level = disgust_level.lower() anger_level = anger_level.lower() formality_str = "" if formality != "n/a": formality_str = "in a " + formality + " manner, " # put all emotions into a list emotions = [] if anticipation_level != "n/a": emotions.append(anticipation_level) if joy_level != "n/a": emotions.append(joy_level) if trust_level != "n/a": emotions.append(trust_level) if fear_level != "n/a": emotions.append(fear_level) if surprise_level != "n/a": emotions.append(surprise_level) if sadness_level != "n/a": emotions.append(sadness_level) if disgust_level != "n/a": emotions.append(disgust_level) if anger_level != "n/a": emotions.append(anger_level) emotions_str = "" if len(emotions) > 0: if len(emotions) == 1: emotions_str = "with emotion of " + emotions[0] + ", " else: emotions_str = "with emotions of " + ", ".join(emotions[:-1]) + " and " + emotions[-1] + ", " lang_level_str = "" if lang_level != LANG_LEVEL_DEFAULT: lang_level_str = "at a " + lang_level + " level, " if translate_to == TRANSLATE_TO_DEFAULT else "" translate_to_str = "" if translate_to != TRANSLATE_TO_DEFAULT: translate_to_str = "translated to " + ( "" if lang_level == TRANSLATE_TO_DEFAULT else lang_level + " level ") + translate_to + ", " literary_style_str = "" if literary_style != LITERARY_STYLE_DEFAULT: if literary_style == "Prose": literary_style_str = "as prose, " if literary_style == "Story": literary_style_str = "as a story, " elif literary_style == "Summary": literary_style_str = "as a summary, " elif literary_style == "Outline": literary_style_str = "as an outline numbers and lower case letters, " elif literary_style == "Bullets": literary_style_str = "as bullet points using bullets, " elif literary_style == "Poetry": literary_style_str = "as a poem, " elif literary_style == "Haiku": literary_style_str = "as a haiku, " elif literary_style == "Limerick": literary_style_str = "as a limerick, " elif literary_style == "Rap": literary_style_str = "as a rap, " elif literary_style == "Joke": literary_style_str = "as a very funny joke with a setup and punchline, " elif literary_style == "Knock-knock": literary_style_str = "as a very funny knock-knock joke, " elif literary_style == "FAQ": literary_style_str = "as a FAQ with several questions and answers, " formatted_prompt = PROMPT_TEMPLATE.format( original_words=desc, num_words=num_words_prompt, formality=formality_str, emotions=emotions_str, lang_level=lang_level_str, translate_to=translate_to_str, literary_style=literary_style_str ) trans_instr = num_words_prompt + formality_str + emotions_str + lang_level_str + translate_to_str + literary_style_str if express_chain and len(trans_instr.strip()) > 0: generated_text = express_chain.run( {'original_words': desc, 'num_words': num_words_prompt, 'formality': formality_str, 'emotions': emotions_str, 'lang_level': lang_level_str, 'translate_to': translate_to_str, 'literary_style': literary_style_str}).strip() else: print("Not transforming text") generated_text = desc # replace all newlines with
in generated_text generated_text = generated_text.replace("\n", "\n\n") prompt_plus_generated = "GPT prompt: " + formatted_prompt + "\n\n" + generated_text print("\n==== date/time: " + str(datetime.datetime.now() - datetime.timedelta(hours=5)) + " ====") print("prompt_plus_generated: " + prompt_plus_generated) return generated_text def load_chain(tools_list, llm): chain = None express_chain = None memory = None if llm: print("\ntools_list", tools_list) tool_names = tools_list tools = load_tools(tool_names, llm=llm, news_api_key=news_api_key, tmdb_bearer_token=tmdb_bearer_token) memory = ConversationBufferMemory(memory_key="chat_history") chain = initialize_agent(tools, llm, agent="conversational-react-description", verbose=True, memory=memory) express_chain = LLMChain(llm=llm, prompt=PROMPT_TEMPLATE, verbose=True) return chain, express_chain, memory # async def set_chain_state_api_key(api_key): # def set_openai_key(api_key): # Set the API key for chain_state # chain_state.api_key = api_key # async def set_express_chain_state_api_key(api_key): # # Set the API key for express_chain_state # express_chain_state.api_key = api_key # async def set_llm_state_api_key(api_key): # Set the API key for llm_state # llm_state.api_key = api_key # async def set_embeddings_state_api_key(api_key): # Set the API key for embeddings_state # embeddings_state.api_key = api_key # async def set_qa_chain_state_api_key(api_key): # Set the API key for qa_chain_state # qa_chain_state.api_key = api_key # async def set_memory_state_api_key(api_key): # Set the API key for memory_state # memory_state.api_key = api_key def set_openai_api_key(api_key): if api_key and api_key.startswith("sk-") and len(api_key) > 50: os.environ["OPENAI_API_KEY"] = api_key print("\n\n ++++++++++++++ Setting OpenAI API key ++++++++++++++ \n\n") print(str(datetime.datetime.now()) + ": Before OpenAI, OPENAI_API_KEY length: " + str( len(os.environ["OPENAI_API_KEY"]))) llm = OpenAI(temperature=0, max_tokens=MAX_TOKENS) print(str(datetime.datetime.now()) + ": After OpenAI, OPENAI_API_KEY length: " + str( len(os.environ["OPENAI_API_KEY"]))) chain, express_chain, memory = load_chain(TOOLS_DEFAULT_LIST, llm) # Pertains to question answering functionality embeddings = OpenAIEmbeddings() qa_chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff") print(str(datetime.datetime.now()) + ": After load_chain, OPENAI_API_KEY length: " + str( len(os.environ["OPENAI_API_KEY"]))) os.environ["OPENAI_API_KEY"] = "" return chain, express_chain, llm, embeddings, qa_chain, memory return None, None, None, None, None, None # PROMPTLAYER_API_BASE = "https://api.promptlayer.com" def run_chain(chain, inp, capture_hidden_text): output = "" hidden_text = None if capture_hidden_text: error_msg = None tmp = sys.stdout hidden_text_io = StringIO() sys.stdout = hidden_text_io try: output = chain.run(input=inp) except AuthenticationError as ae: error_msg = AUTH_ERR_MSG + str(datetime.datetime.now()) + ". " + str(ae) print("error_msg", error_msg) except RateLimitError as rle: error_msg = "\n\nRateLimitError: " + str(rle) except ValueError as ve: error_msg = "\n\nValueError: " + str(ve) except InvalidRequestError as ire: error_msg = "\n\nInvalidRequestError: " + str(ire) except Exception as e: error_msg = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e) sys.stdout = tmp hidden_text = hidden_text_io.getvalue() # remove escape characters from hidden_text hidden_text = re.sub(r'\x1b[^m]*m', '', hidden_text) # remove "Entering new AgentExecutor chain..." from hidden_text hidden_text = re.sub(r"Entering new AgentExecutor chain...\n", "", hidden_text) # remove "Finished chain." from hidden_text hidden_text = re.sub(r"Finished chain.", "", hidden_text) # Add newline after "Thought:" "Action:" "Observation:" "Input:" and "AI:" hidden_text = re.sub(r"Thought:", "\n\nThought:", hidden_text) hidden_text = re.sub(r"Action:", "\n\nAction:", hidden_text) hidden_text = re.sub(r"Observation:", "\n\nObservation:", hidden_text) hidden_text = re.sub(r"Input:", "\n\nInput:", hidden_text) hidden_text = re.sub(r"AI:", "\n\nAI:", hidden_text) if error_msg: hidden_text += error_msg print("hidden_text: ", hidden_text) else: try: output = chain.run(input=inp) except AuthenticationError as ae: output = AUTH_ERR_MSG + str(datetime.datetime.now()) + ". " + str(ae) print("output", output) except RateLimitError as rle: output = "\n\nRateLimitError: " + str(rle) except ValueError as ve: output = "\n\nValueError: " + str(ve) except InvalidRequestError as ire: output = "\n\nInvalidRequestError: " + str(ire) except Exception as e: output = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e) return output, hidden_text def reset_memory(history, memory): memory.clear() history = [] return history, history, memory class ChatWrapper: def __init__(self): self.lock = Lock() def __call__( self, api_key: str, inp: str, history: Optional[Tuple[str, str]], chain: Optional[ConversationChain], trace_chain: bool, speak_text: bool, talking_head: bool, monologue: bool, express_chain: Optional[LLMChain], num_words, formality, anticipation_level, joy_level, trust_level, fear_level, surprise_level, sadness_level, disgust_level, anger_level, lang_level, translate_to, literary_style, qa_chain, docsearch, use_embeddings ): """Execute the chat functionality.""" self.lock.acquire() try: print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") print("inp: " + inp) print("trace_chain: ", trace_chain) print("speak_text: ", speak_text) print("talking_head: ", talking_head) print("monologue: ", monologue) history = history or [] # If chain is None, that is because no API key was provided. output = "Please paste your OpenAI key from openai.com to use this app. " + str(datetime.datetime.now()) hidden_text = output if chain: # Set OpenAI key import openai openai.api_key = api_key if not monologue: if use_embeddings: if inp and inp.strip() != "": if docsearch: docs = docsearch.similarity_search(inp) output = str(qa_chain.run(input_documents=docs, question=inp)) else: output, hidden_text = "Please supply some text in the the Embeddings tab.", None else: output, hidden_text = "What's on your mind?", None else: output, hidden_text = run_chain(chain, inp, capture_hidden_text=trace_chain) else: output, hidden_text = inp, None output = transform_text(output, express_chain, num_words, formality, anticipation_level, joy_level, trust_level, fear_level, surprise_level, sadness_level, disgust_level, anger_level, lang_level, translate_to, literary_style) text_to_display = output if trace_chain: text_to_display = hidden_text + "\n\n" + output history.append((inp, text_to_display)) html_video, temp_file, html_audio, temp_aud_file = None, None, None, None if speak_text: if talking_head: if len(output) <= MAX_TALKING_HEAD_TEXT_LENGTH: html_video, temp_file = do_html_video_speak(output, translate_to) else: temp_file = LOOPING_TALKING_HEAD # html_video = create_html_video(temp_file, TALKING_HEAD_WIDTH) html_audio, temp_aud_file = do_html_audio_speak(output, translate_to) else: html_audio, temp_aud_file = do_html_audio_speak(output, translate_to) else: if talking_head: temp_file = LOOPING_TALKING_HEAD # html_video = create_html_video(temp_file, TALKING_HEAD_WIDTH) else: # html_audio, temp_aud_file = do_html_audio_speak(output, translate_to) # html_video = create_html_video(temp_file, "128") pass except Exception as e: raise e finally: self.lock.release() return history, history, html_video, temp_file, html_audio, temp_aud_file, "" # return history, history, html_audio, temp_aud_file, "" chat = ChatWrapper() def do_html_audio_speak(words_to_speak, polly_language): polly_client = boto3.Session( aws_access_key_id=os.environ["AWS_ACCESS_KEY_ID"], aws_secret_access_key=os.environ["AWS_SECRET_ACCESS_KEY"], region_name=os.environ["AWS_DEFAULT_REGION"] ).client('polly') # voice_id, language_code, engine = POLLY_VOICE_DATA.get_voice(polly_language, "Female") voice_id, language_code, engine = POLLY_VOICE_DATA.get_voice(polly_language, "Male") if not voice_id: # voice_id = "Joanna" voice_id = "Matthew" language_code = "en-US" engine = NEURAL_ENGINE response = polly_client.synthesize_speech( Text=words_to_speak, OutputFormat='mp3', VoiceId=voice_id, LanguageCode=language_code, Engine=engine ) html_audio = '
no audio
' # Save the audio stream returned by Amazon Polly on Lambda's temp directory if "AudioStream" in response: with closing(response["AudioStream"]) as stream: # output = os.path.join("/tmp/", "speech.mp3") try: with open('audios/tempfile.mp3', 'wb') as f: f.write(stream.read()) temp_aud_file = gr.File("audios/tempfile.mp3") temp_aud_file_url = "/file=" + temp_aud_file.value['name'] html_audio = f'' except IOError as error: # Could not write to file, exit gracefully print(error) return None, None else: # The response didn't contain audio data, exit gracefully print("Could not stream audio") return None, None return html_audio, "audios/tempfile.mp3" # def create_html_video(file_name, width): # temp_file_url = "/file=" + tmp_file.value['name'] # html_video = f'' # return html_video def do_html_video_speak(words_to_speak, azure_language): azure_voice = AZURE_VOICE_DATA.get_voice(azure_language, "Male") if not azure_voice: azure_voice = "en-US-ChristopherNeural" headers = {"Authorization": f"Bearer {os.environ['EXHUMAN_API_KEY']}"} body = { 'bot_name': 'Masahiro', 'bot_response': words_to_speak, 'azure_voice': azure_voice, 'azure_style': 'friendly', 'animation_pipeline': 'high_speed', } api_endpoint = "https://api.exh.ai/animations/v1/generate_lipsync" res = requests.post(api_endpoint, json=body, headers=headers) print("res.status_code: ", res.status_code) html_video = '
no video
' if isinstance(res.content, bytes): response_stream = io.BytesIO(res.content) print("len(res.content)): ", len(res.content)) with open('videos/tempfile.mp4', 'wb') as f: f.write(response_stream.read()) temp_file = gr.File("videos/tempfile.mp4") temp_file_url = "/file=" + temp_file.value['name'] html_video = f'' else: print('video url unknown') return html_video, "videos/tempfile.mp4" def update_selected_tools(widget, state, llm): if widget: state = widget chain, express_chain, memory = load_chain(state, llm) return state, llm, chain, express_chain # def update_talking_head(widget, state): # if widget: # state = widget # video_html_talking_head = create_html_video(LOOPING_TALKING_HEAD, TALKING_HEAD_WIDTH) # return state, video_html_talking_head # else: # # return state, create_html_video(LOOPING_TALKING_HEAD, "32") # return None, "
"


def update_foo(widget, state):
    if widget:
        state = widget
        return state


# Pertains to question answering functionality
def update_embeddings(embeddings_text, embeddings, qa_chain):
    if embeddings_text:
        text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
        texts = text_splitter.split_text(embeddings_text)

        docsearch = FAISS.from_texts(texts, embeddings)
        print("Embeddings updated")
        return docsearch


# Pertains to question answering functionality
def update_use_embeddings(widget, state):
    if widget:
        state = widget
        return state
    



with gr.Blocks(css=".gradio-container {background-color: lightgray}") as block:
    llm_state = gr.State()
    history_state = gr.State()
    chain_state = gr.State()
    express_chain_state = gr.State()
    tools_list_state = gr.State(TOOLS_DEFAULT_LIST)
    trace_chain_state = gr.State(False)
    speak_text_state = gr.State(False)
    talking_head_state = gr.State(True)
    monologue_state = gr.State(False)  # Takes the input and repeats it back to the user, optionally transforming it.
    memory_state = gr.State()

    # Pertains to Express-inator functionality
    num_words_state = gr.State(NUM_WORDS_DEFAULT)
    formality_state = gr.State(FORMALITY_DEFAULT)
    anticipation_level_state = gr.State(EMOTION_DEFAULT)
    joy_level_state = gr.State(EMOTION_DEFAULT)
    trust_level_state = gr.State(EMOTION_DEFAULT)
    fear_level_state = gr.State(EMOTION_DEFAULT)
    surprise_level_state = gr.State(EMOTION_DEFAULT)
    sadness_level_state = gr.State(EMOTION_DEFAULT)
    disgust_level_state = gr.State(EMOTION_DEFAULT)
    anger_level_state = gr.State(EMOTION_DEFAULT)
    lang_level_state = gr.State(LANG_LEVEL_DEFAULT)
    translate_to_state = gr.State(TRANSLATE_TO_DEFAULT)
    literary_style_state = gr.State(LITERARY_STYLE_DEFAULT)

    # Pertains to WHISPER functionality
    whisper_lang_state = gr.State(WHISPER_DETECT_LANG)

    # Pertains to question answering functionality
    embeddings_state = gr.State()
    qa_chain_state = gr.State()
    docsearch_state = gr.State()
    use_embeddings_state = gr.State(False)

    with gr.Tab("Chat"):
        with gr.Row():
            with gr.Column():
                gr.HTML(
                    """
KB Prototype

GPT-Monster Gym

""") openai_api_key_textbox = gr.Textbox(placeholder="sk-... 시작하는 OpenAI API key 붙여넣기", show_label=False, lines=1, type='password') # openai_api_key_textbox = gr.Textbox(placeholder="Paste your OpenAI API key (sk-...) and hit Enter", # show_label=False, lines=1, type='password') with gr.Row(): with gr.Column(scale=1, min_width=TALKING_HEAD_WIDTH, visible=True): speak_text_cb = gr.Checkbox(label="음성기능", value=False) speak_text_cb.change(update_foo, inputs=[speak_text_cb, speak_text_state], outputs=[speak_text_state]) # my_file = gr.File(label="Upload a file", type="file", visible=False) # tmp_file = gr.File(LOOPING_TALKING_HEAD, visible=False) # # tmp_file_url = "/file=" + tmp_file.value['name'] # htm_video = create_html_video(LOOPING_TALKING_HEAD, TALKING_HEAD_WIDTH) # video_html = gr.HTML(htm_video) # my_aud_file = gr.File(label="Audio file", type="file", visible=True) tmp_aud_file = gr.File("audios/tempfile.mp3", visible=False) tmp_aud_file_url = "/file=" + tmp_aud_file.value['name'] htm_audio = f'' audio_html = gr.HTML(htm_audio) with gr.Column(scale=7): chatbot = gr.Chatbot() with gr.Row(): message = gr.Textbox(label="무엇을 도와드릴까요?", placeholder="지금 떠오는 생각을 한번 말해 보세요", lines=1) submit = gr.Button(value="Send", variant="secondary").style(full_width=False) # UNCOMMENT TO USE WHISPER with gr.Row(): audio_comp = gr.Microphone(source="microphone", type="filepath", label="그냥 말해봐!", interactive=True, streaming=False) audio_comp.change(transcribe, inputs=[audio_comp, whisper_lang_state], outputs=[message]) # TEMPORARY FOR TESTING # with gr.Row(): # audio_comp_tb = gr.Textbox(label="Just say it!", lines=1) # audio_comp_tb.submit(transcribe_dummy, inputs=[audio_comp_tb, whisper_lang_state], outputs=[message]) gr.Examples( examples=["입력된 내용을 영어로 번역해 주세요. 원어민의 표현으로 번역해주세요", "다음 입력할 약관 내용을 유머러스하게 설명해 주세요", "SQL쿼리를 튜닝해 주세요", "파이썬으로 웹스크래핑 코드를 작성해 주세요" , "이 코드에서 오류를 수정해 주세요", "위 내용을 정리해 주세요", "위 내용의 예상 질문을 만들어 주세요"], inputs=message ) with gr.Tab("KB PlayGround"): trace_chain_cb = gr.Checkbox(label="[KB상품안내 금지단어] 탐색시 GPT 답변제한", value=False) trace_chain_cb = gr.Checkbox(label="[KB상품광고 심의기준 필터링] 부적격 단어 → 유사단어 대안제시", value=False) with gr.Tab("Settings"): tools_cb_group = gr.CheckboxGroup(label="Tools:", choices=TOOLS_LIST, value=TOOLS_DEFAULT_LIST) tools_cb_group.change(update_selected_tools, inputs=[tools_cb_group, tools_list_state, llm_state], outputs=[tools_list_state, llm_state, chain_state, express_chain_state]) trace_chain_cb = gr.Checkbox(label="Show reasoning chain in chat bubble", value=False) trace_chain_cb.change(update_foo, inputs=[trace_chain_cb, trace_chain_state], outputs=[trace_chain_state]) # speak_text_cb = gr.Checkbox(label="Speak text from agent", value=False) # speak_text_cb.change(update_foo, inputs=[speak_text_cb, speak_text_state], # outputs=[speak_text_state]) talking_head_cb = gr.Checkbox(label="Show talking head", value=True) # talking_head_cb.change(update_talking_head, inputs=[talking_head_cb, talking_head_state], # outputs=[talking_head_state, video_html]) monologue_cb = gr.Checkbox(label="Babel fish mode (translate/restate what you enter, no conversational agent)", value=False) monologue_cb.change(update_foo, inputs=[monologue_cb, monologue_state], outputs=[monologue_state]) reset_btn = gr.Button(value="Reset chat", variant="secondary").style(full_width=False) reset_btn.click(reset_memory, inputs=[history_state, memory_state], outputs=[chatbot, history_state, memory_state]) with gr.Tab("Whisper STT"): whisper_lang_radio = gr.Radio(label="Whisper speech-to-text language:", choices=[ WHISPER_DETECT_LANG, "Arabic", "Arabic (Gulf)", "Catalan", "Chinese (Cantonese)", "Chinese (Mandarin)", "Danish", "Dutch", "English (Australian)", "English (British)", "English (Indian)", "English (New Zealand)", "English (South African)", "English (US)", "English (Welsh)", "Finnish", "French", "French (Canadian)", "German", "German (Austrian)", "Georgian", "Hindi", "Icelandic", "Indonesian", "Italian", "Japanese", "Korean", "Norwegian", "Polish", "Portuguese (Brazilian)", "Portuguese (European)", "Romanian", "Russian", "Spanish (European)", "Spanish (Mexican)", "Spanish (US)", "Swedish", "Turkish", "Ukrainian", "Vietnamese", "Welsh"], value=WHISPER_DETECT_LANG) whisper_lang_radio.change(update_foo, inputs=[whisper_lang_radio, whisper_lang_state], outputs=[whisper_lang_state]) with gr.Tab("Translate to"): lang_level_radio = gr.Radio(label="Language level:", choices=[ LANG_LEVEL_DEFAULT, "1st grade", "2nd grade", "3rd grade", "4th grade", "5th grade", "6th grade", "7th grade", "8th grade", "9th grade", "10th grade", "11th grade", "12th grade", "University"], value=LANG_LEVEL_DEFAULT) lang_level_radio.change(update_foo, inputs=[lang_level_radio, lang_level_state], outputs=[lang_level_state]) translate_to_radio = gr.Radio(label="Language:", choices=[ TRANSLATE_TO_DEFAULT, "Arabic", "Arabic (Gulf)", "Catalan", "Chinese (Cantonese)", "Chinese (Mandarin)", "Danish", "Dutch", "English (Australian)", "English (British)", "English (Indian)", "English (New Zealand)", "English (South African)", "English (US)", "English (Welsh)", "Finnish", "French", "French (Canadian)", "German", "German (Austrian)", "Georgian", "Hindi", "Icelandic", "Indonesian", "Italian", "Japanese", "Korean", "Norwegian", "Polish", "Portuguese (Brazilian)", "Portuguese (European)", "Romanian", "Russian", "Spanish (European)", "Spanish (Mexican)", "Spanish (US)", "Swedish", "Turkish", "Ukrainian", "Vietnamese", "Welsh", "emojis", "Gen Z slang", "how the stereotypical Karen would say it", "Klingon", "Neanderthal", "Pirate", "Strange Planet expospeak technical talk", "Yoda"], value=TRANSLATE_TO_DEFAULT) translate_to_radio.change(update_foo, inputs=[translate_to_radio, translate_to_state], outputs=[translate_to_state]) with gr.Tab("Formality"): formality_radio = gr.Radio(label="Formality:", choices=[FORMALITY_DEFAULT, "Casual", "Polite", "Honorific"], value=FORMALITY_DEFAULT) formality_radio.change(update_foo, inputs=[formality_radio, formality_state], outputs=[formality_state]) with gr.Tab("Lit style"): literary_style_radio = gr.Radio(label="Literary style:", choices=[ LITERARY_STYLE_DEFAULT, "Prose", "Story", "Summary", "Outline", "Bullets", "Poetry", "Haiku", "Limerick", "Rap", "Joke", "Knock-knock", "FAQ"], value=LITERARY_STYLE_DEFAULT) literary_style_radio.change(update_foo, inputs=[literary_style_radio, literary_style_state], outputs=[literary_style_state]) with gr.Tab("Emotions"): anticipation_level_radio = gr.Radio(label="Anticipation level:", choices=[EMOTION_DEFAULT, "Interest", "Anticipation", "Vigilance"], value=EMOTION_DEFAULT) anticipation_level_radio.change(update_foo, inputs=[anticipation_level_radio, anticipation_level_state], outputs=[anticipation_level_state]) joy_level_radio = gr.Radio(label="Joy level:", choices=[EMOTION_DEFAULT, "Serenity", "Joy", "Ecstasy"], value=EMOTION_DEFAULT) joy_level_radio.change(update_foo, inputs=[joy_level_radio, joy_level_state], outputs=[joy_level_state]) trust_level_radio = gr.Radio(label="Trust level:", choices=[EMOTION_DEFAULT, "Acceptance", "Trust", "Admiration"], value=EMOTION_DEFAULT) trust_level_radio.change(update_foo, inputs=[trust_level_radio, trust_level_state], outputs=[trust_level_state]) fear_level_radio = gr.Radio(label="Fear level:", choices=[EMOTION_DEFAULT, "Apprehension", "Fear", "Terror"], value=EMOTION_DEFAULT) fear_level_radio.change(update_foo, inputs=[fear_level_radio, fear_level_state], outputs=[fear_level_state]) surprise_level_radio = gr.Radio(label="Surprise level:", choices=[EMOTION_DEFAULT, "Distraction", "Surprise", "Amazement"], value=EMOTION_DEFAULT) surprise_level_radio.change(update_foo, inputs=[surprise_level_radio, surprise_level_state], outputs=[surprise_level_state]) sadness_level_radio = gr.Radio(label="Sadness level:", choices=[EMOTION_DEFAULT, "Pensiveness", "Sadness", "Grief"], value=EMOTION_DEFAULT) sadness_level_radio.change(update_foo, inputs=[sadness_level_radio, sadness_level_state], outputs=[sadness_level_state]) disgust_level_radio = gr.Radio(label="Disgust level:", choices=[EMOTION_DEFAULT, "Boredom", "Disgust", "Loathing"], value=EMOTION_DEFAULT) disgust_level_radio.change(update_foo, inputs=[disgust_level_radio, disgust_level_state], outputs=[disgust_level_state]) anger_level_radio = gr.Radio(label="Anger level:", choices=[EMOTION_DEFAULT, "Annoyance", "Anger", "Rage"], value=EMOTION_DEFAULT) anger_level_radio.change(update_foo, inputs=[anger_level_radio, anger_level_state], outputs=[anger_level_state]) with gr.Tab("Max words"): num_words_slider = gr.Slider(label="Max number of words to generate (0 for don't care)", value=NUM_WORDS_DEFAULT, minimum=0, maximum=MAX_WORDS, step=10) num_words_slider.change(update_foo, inputs=[num_words_slider, num_words_state], outputs=[num_words_state]) with gr.Tab("Embeddings"): embeddings_text_box = gr.Textbox(label="Enter text for embeddings and hit Create:", lines=20) with gr.Row(): use_embeddings_cb = gr.Checkbox(label="Use embeddings", value=False) use_embeddings_cb.change(update_use_embeddings, inputs=[use_embeddings_cb, use_embeddings_state], outputs=[use_embeddings_state]) embeddings_text_submit = gr.Button(value="Create", variant="secondary").style(full_width=False) embeddings_text_submit.click(update_embeddings, inputs=[embeddings_text_box, embeddings_state, qa_chain_state], outputs=[docsearch_state]) gr.HTML("""

OpenAI GPT-3.5와 LangChain을 사용하여 채팅형식으로 보여줍니다. 코드 작성을 요청, 오류 수정, SQL튜닝, 번역을 시작으로 KB금융 전문가로서 판단되는 Data Import와 Modelling를 오픈소스로 실험해 보세요.

""") gr.HTML("""

이 어플리케이션은James L. Weaver 님의 오픈소스를 활용하였습니다.

""") # gr.HTML(""" #
# # # # # # #
# The OpenAI API key is stored in the browser's local storage and retrieved when the application is loaded. # # This is done using the change() and load() methods of the openai_api_key_textbox object. # # When the user inputs the OpenAI API key, it is saved to the local storage: # openai_api_key_textbox.change(None, # inputs=[openai_api_key_textbox], # outputs=None, _js="(api_key) => localStorage.setItem('open_api_key', api_key)") # # When the application is loaded, the OpenAI API key is retrieved from the local storage and set to the openai_api_key_textbox: # block.load(None, inputs=None, outputs=openai_api_key_textbox, _js="()=> localStorage.getItem('open_api_key')") # # The OpenAI API key is then used to set the API key for various components in the application: # openai_api_key_textbox.change(set_openai_api_key, # inputs=[openai_api_key_textbox], # outputs=[chain_state, express_chain_state, llm_state, embeddings_state, # qa_chain_state, memory_state]) # # The algorithmic timeline for using the OpenAI API key is as follows: # # 1. The user inputs the OpenAI API key, which is saved to the local storage. # # 2. The application retrieves the OpenAI API key from the local storage when it is loaded. # # 3. The OpenAI API key is used to set the API key for various components in the application. # # 4. The application can now use the OpenAI API key to make requests to the OpenAI API. # """) # gr.HTML("""
# # Duplicate Space # Powered by LangChain 🦜️🔗 #
""") message.submit(chat, inputs=[openai_api_key_textbox, message, history_state, chain_state, trace_chain_state, speak_text_state, talking_head_state, monologue_state, express_chain_state, num_words_state, formality_state, anticipation_level_state, joy_level_state, trust_level_state, fear_level_state, surprise_level_state, sadness_level_state, disgust_level_state, anger_level_state, lang_level_state, translate_to_state, literary_style_state, qa_chain_state, docsearch_state, use_embeddings_state], outputs=[chatbot, history_state, audio_html, tmp_aud_file, message]) # outputs=[chatbot, history_state, video_html, my_file, audio_html, tmp_aud_file, message]) # outputs=[chatbot, history_state, audio_html, tmp_aud_file, message]) submit.click(chat, inputs=[openai_api_key_textbox, message, history_state, chain_state, trace_chain_state, speak_text_state, talking_head_state, monologue_state, express_chain_state, num_words_state, formality_state, anticipation_level_state, joy_level_state, trust_level_state, fear_level_state, surprise_level_state, sadness_level_state, disgust_level_state, anger_level_state, lang_level_state, translate_to_state, literary_style_state, qa_chain_state, docsearch_state, use_embeddings_state], outputs=[chatbot, history_state, audio_html, tmp_aud_file, message]) # outputs=[chatbot, history_state, video_html, my_file, audio_html, tmp_aud_file, message]) # outputs=[chatbot, history_state, audio_html, tmp_aud_file, message]) openai_api_key_textbox.change(None, inputs=[openai_api_key_textbox], outputs=None, _js="(api_key) => localStorage.setItem('open_api_key', api_key)") openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox], outputs=[chain_state, express_chain_state, llm_state, embeddings_state, qa_chain_state, memory_state]) block.load(None, inputs=None, outputs=openai_api_key_textbox, _js="()=> localStorage.getItem('open_api_key')") block.launch(debug=True)