File size: 1,491 Bytes
14aa639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import nltk
nltk.download('punkt')
tokenizer = AutoTokenizer.from_pretrained("anukvma/bart-base-medium-email-subject-generation-v5")
model = AutoModelForSeq2SeqLM.from_pretrained("anukvma/bart-base-medium-email-subject-generation-v5")
text = """
Harry - I got kicked out of the system, so I'm sending this from Tom's account.
He can fill you in on the potential deal with STEAG.
I left my resume on your chair.
I'll e-mail a copy when I have my home account running.
My contact info is:
"""
inputs = ["provide email subject: " + text]
inputs = tokenizer(inputs, max_length=512, truncation=True, return_tensors="pt")
output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=1, max_length=10)
decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
predicted_title = nltk.sent_tokenize(decoded_output.strip())[0]
print(predicted_title)
def generate_subject(text):
inputs = ["provide email subject: " + text]
inputs = tokenizer(inputs, max_length=512, truncation=True, return_tensors="pt")
output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=1, max_length=10)
decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
predicted_title = nltk.sent_tokenize(decoded_output.strip())[0]
return predicted_title
import gradio as gr
gr.Interface(fn = generate_subject, inputs="text",outputs="text").launch() |