from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import nltk nltk.download('punkt') tokenizer = AutoTokenizer.from_pretrained("anukvma/bart-base-medium-email-subject-generation-v5") model = AutoModelForSeq2SeqLM.from_pretrained("anukvma/bart-base-medium-email-subject-generation-v5") text = """ Harry - I got kicked out of the system, so I'm sending this from Tom's account. He can fill you in on the potential deal with STEAG. I left my resume on your chair. I'll e-mail a copy when I have my home account running. My contact info is: """ inputs = ["provide email subject: " + text] inputs = tokenizer(inputs, max_length=512, truncation=True, return_tensors="pt") output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=1, max_length=10) decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0] predicted_title = nltk.sent_tokenize(decoded_output.strip())[0] print(predicted_title) def generate_subject(text): inputs = ["provide email subject: " + text] inputs = tokenizer(inputs, max_length=512, truncation=True, return_tensors="pt") output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=1, max_length=10) decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0] predicted_title = nltk.sent_tokenize(decoded_output.strip())[0] return predicted_title import gradio as gr gr.Interface(fn = generate_subject, inputs="text",outputs="text").launch()