Spaces:
Sleeping
Sleeping
File size: 891 Bytes
e7bda41 e05a359 e7bda41 3e902ab e7bda41 6d13369 e7bda41 6d13369 34c5689 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import nltk
nltk.download('punkt')
def generate_answer(question):
model_name = "anukvma/bart-aiml-question-answer-v2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
inputs = ["Answer this AIML Question: " + question]
inputs = tokenizer(inputs, max_length=256, truncation=True, return_tensors="pt")
output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=1, max_length=512)
decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
predicted_title = nltk.sent_tokenize(decoded_output.strip())[0]
return predicted_title
iface = gr.Interface(
fn=generate_answer,
inputs=[
gr.Textbox(lines=5, label="Question")
],
outputs=gr.Textbox(label="Answer")
)
iface.launch() |