import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import nltk nltk.download('punkt') def generate_answer(question): model_name = "anukvma/bart-aiml-question-answer-v2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) inputs = ["Answer this AIML Question: " + question] inputs = tokenizer(inputs, max_length=256, truncation=True, return_tensors="pt") output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=1, max_length=512) decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0] predicted_title = nltk.sent_tokenize(decoded_output.strip())[0] return predicted_title iface = gr.Interface( fn=generate_answer, inputs=[ gr.Textbox(lines=5, label="Question") ], outputs=gr.Textbox(label="Answer") ) iface.launch()