File size: 2,874 Bytes
5da68a0 d2d894e 5da68a0 d2d894e 5da68a0 d2d894e 5da68a0 d2d894e 5da68a0 d2d894e 5da68a0 d2d894e 5da68a0 d2d894e 5da68a0 d2d894e 5da68a0 d2d894e 5da68a0 d2d894e 5da68a0 d2d894e 5da68a0 d2d894e 5da68a0 d2d894e 5da68a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# Model documentation & parameters
**GeoDiff prompt**: Here you can upload a `.pkl` file with the necessary variables to initialize a `GeoDiff` generation. Our example file contains five example configurations. NOTE: For details on how to create such files for your custom data, see [original paper](https://openreview.net/forum?id=PzcvxEMzvQC) and this [Colab](https://colab.research.google.com/drive/1pLYYWQhdLuv1q-JtEHGZybxp2RBF8gPs#scrollTo=-3-P4w5sXkRU)
**Prompt ID**: Which of the five example configurations to be used. If you use your own file and have the files in a flat dictionary, leave this blank. If your own file should contain multiple examples, create a top-level dictionary with keys as ascending integers and values as example dictionaries.
**Number of samples**: How many samples should be generated (between 1 and 50).
# Model card -- GeoDiff
**Model Details**: [GeoDiff](https://openreview.net/forum?id=PzcvxEMzvQC): A Geometric Diffusion Model for Molecular Conformation Generation
**Developers**: Minkai Xu and colleagues from MILA and Stanford University.
**Distributors**: GT4SD Developers.
**Model date**: 2022.
**Model version**: Checkpoints provided by original authors ([see their GitHub repo](https://github.com/MinkaiXu/GeoDiff)).
**Model type**: A Geometric Diffusion Model for Molecular Conformation Generation
**Information about training algorithms, parameters, fairness constraints or other applied approaches, and features**:
N.A.
**Paper or other resource for more information**:
N.A.
**License**: MIT
**Where to send questions or comments about the model**: Open an issue on [`GeoDiff`](https://github.com/MinkaiXu/GeoDiff) repo.
**Intended Use. Use cases that were envisioned during development**: Chemical research, in particular drug discovery.
**Primary intended uses/users**: Researchers and computational chemists using the model for model comparison or research exploration purposes.
**Out-of-scope use cases**: Production-level inference, producing molecules with harmful properties.
**Metrics**: N.A.
**Datasets**: N.A.
**Ethical Considerations**: Unclear, please consult with original authors in case of questions.
**Caveats and Recommendations**: Unclear, please consult with original authors in case of questions.
Model card prototype inspired by [Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)
## Citation
```bib
@inproceedings{xu2022geodiff,
author = {Minkai Xu and Lantao Yu and Yang Song and Chence Shi and Stefano Ermon and Jian Tang},
title = {GeoDiff: {A} Geometric Diffusion Model for Molecular Conformation Generation},
booktitle = {The Tenth International Conference on Learning Representations, {ICLR}},
year = {2022},
}
``` |