File size: 5,137 Bytes
5984d9a
 
 
 
 
 
e83e5dc
 
 
5984d9a
e83e5dc
 
 
 
5984d9a
 
 
 
 
 
 
 
e83e5dc
4b5d582
e83e5dc
 
5984d9a
 
e83e5dc
5984d9a
 
 
 
e83e5dc
 
 
 
 
 
 
 
5984d9a
 
e83e5dc
 
 
5984d9a
 
e83e5dc
 
 
 
 
 
 
 
 
 
5984d9a
e83e5dc
 
621ac03
 
 
 
e83e5dc
 
 
 
 
5984d9a
 
e83e5dc
 
 
 
 
 
5984d9a
 
 
 
 
 
 
e83e5dc
973616f
5984d9a
 
 
 
 
e83e5dc
 
 
 
5984d9a
 
 
 
 
 
 
 
e83e5dc
5984d9a
e83e5dc
 
 
 
 
5984d9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e5dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5984d9a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import logging
import pathlib
from typing import List

import gradio as gr
import pandas as pd
from gt4sd.algorithms.controlled_sampling.paccmann_gp import (
    PaccMannGPGenerator,
    PaccMannGP,
)
from gt4sd.algorithms.controlled_sampling.paccmann_gp.implementation import (
    MINIMIZATION_FUNCTIONS,
)

from gt4sd.algorithms.registry import ApplicationsRegistry

from utils import draw_grid_generate

logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())


MINIMIZATION_FUNCTIONS.pop("callable", None)
MINIMIZATION_FUNCTIONS.pop("molwt", None)


def run_inference(
    algorithm_version: str,
    targets: List[str],
    protein_target: str,
    temperature: float,
    length: float,
    number_of_samples: int,
    limit: int,
    number_of_steps: int,
    number_of_initial_points: int,
    number_of_optimization_rounds: int,
    sampling_variance: float,
    samples_for_evaluation: int,
    maximum_number_of_sampling_steps: int,
    seed: int,
):

    config = PaccMannGPGenerator(
        algorithm_version=algorithm_version.split("_")[-1],
        batch_size=32,
        temperature=temperature,
        generated_length=length,
        limit=limit,
        acquisition_function="EI",
        number_of_steps=number_of_steps,
        number_of_initial_points=number_of_initial_points,
        initial_point_generator="random",
        number_of_optimization_rounds=number_of_optimization_rounds,
        sampling_variance=sampling_variance,
        samples_for_evaluation=samples_for_evaluation,
        maximum_number_of_sampling_steps=maximum_number_of_sampling_steps,
        seed=seed,
    )
    target = {i: {} for i in targets}
    if "affinity" in targets:
        if protein_target == "" or not isinstance(protein_target, str):
            raise ValueError(
                f"Protein target must be specified for affinity prediction, not ={protein_target}"
            )
        target["affinity"]["protein"] = protein_target
    else:
        protein_target = ""

    model = PaccMannGP(config, target=target)
    samples = list(model.sample(number_of_samples))

    return draw_grid_generate(
        samples=samples,
        n_cols=5,
        properties=set(target.keys()),
        protein_target=protein_target,
    )


if __name__ == "__main__":

    # Preparation (retrieve all available algorithms)
    all_algos = ApplicationsRegistry.list_available()
    algos = [
        x["algorithm_version"]
        for x in list(filter(lambda x: "PaccMannGP" in x["algorithm_name"], all_algos))
    ]

    # Load metadata
    metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards")

    examples = pd.read_csv(
        metadata_root.joinpath("examples.csv"), header=None, sep="|"
    ).fillna("")
    examples[1] = examples[1].apply(eval)

    with open(metadata_root.joinpath("article.md"), "r") as f:
        article = f.read()
    with open(metadata_root.joinpath("description.md"), "r") as f:
        description = f.read()

    demo = gr.Interface(
        fn=run_inference,
        title="PaccMannGP",
        inputs=[
            gr.Dropdown(algos, label="Algorithm version", value="v0"),
            gr.CheckboxGroup(
                choices=list(MINIMIZATION_FUNCTIONS.keys()),
                value=["qed"],
                label="Property goals",
            ),
            gr.Textbox(
                label="Protein target",
                placeholder="MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTT",
                lines=1,
            ),
            gr.Slider(minimum=0.5, maximum=2, value=1, label="Decoding temperature"),
            gr.Slider(
                minimum=5,
                maximum=400,
                value=100,
                label="Maximal sequence length",
                step=1,
            ),
            gr.Slider(
                minimum=1, maximum=50, value=10, label="Number of samples", step=1
            ),
            gr.Slider(minimum=1, maximum=8, value=4.0, label="Limit"),
            gr.Slider(minimum=1, maximum=32, value=8, label="Number of steps", step=1),
            gr.Slider(
                minimum=1, maximum=32, value=4, label="Number of initial points", step=1
            ),
            gr.Slider(
                minimum=1,
                maximum=4,
                value=1,
                label="Number of optimization rounds",
                step=1,
            ),
            gr.Slider(minimum=0.01, maximum=1, value=0.1, label="Sampling variance"),
            gr.Slider(
                minimum=1,
                maximum=10,
                value=1,
                label="Samples used for evaluation",
                step=1,
            ),
            gr.Slider(
                minimum=1,
                maximum=64,
                value=4,
                label="Maximum number of sampling steps",
                step=1,
            ),
            gr.Number(value=42, label="Seed", precision=0),
        ],
        outputs=gr.HTML(label="Output"),
        article=article,
        description=description,
        examples=examples.values.tolist(),
    )
    demo.launch(debug=True, show_error=True)