paccmann_rl / app.py
jannisborn's picture
update
fcca9f9 unverified
raw
history blame
4.23 kB
import logging
import pathlib
from typing import List
import gradio as gr
import numpy as np
import pandas as pd
from gt4sd.algorithms.conditional_generation.paccmann_rl import (
PaccMannRL,
PaccMannRLOmicBasedGenerator,
PaccMannRLProteinBasedGenerator,
)
from gt4sd.algorithms.generation.paccmann_vae import PaccMannVAE, PaccMannVAEGenerator
from gt4sd.algorithms.registry import ApplicationsRegistry
from utils import draw_grid_generate
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
TITLE = "MoLeR"
def run_inference(
algorithm_version: str,
inference_type: str,
protein_target: str,
omics_target: str,
temperature: float,
length: float,
number_of_samples: int,
):
if inference_type == "Unbiased":
algorithm_class = PaccMannVAEGenerator
model_class = PaccMannVAE
target = None
elif inference_type == "Conditional":
if "Protein" in algorithm_version:
algorithm_class = PaccMannRLProteinBasedGenerator
target = protein_target
elif "Omic" in algorithm_version:
algorithm_class = PaccMannRLOmicBasedGenerator
try:
test_target = [float(x) for x in omics_target.split(" ")]
except Exception:
raise ValueError(
f"Expected 2128 space-separated omics values, got {omics_target}"
)
if len(test_target) != 2128:
raise ValueError(
f"Expected 2128 omics values, got {len(target)}: {target}"
)
target = omics_target
else:
raise ValueError(f"Unknown algorithm version {algorithm_version}")
model_class = PaccMannRL
else:
raise ValueError(f"Unknown inference type {inference_type}")
config = algorithm_class(
algorithm_version.split("_")[-1],
temperature=temperature,
generated_length=length,
)
model = model_class(config, target=target)
samples = list(model.sample(number_of_samples))
return draw_grid_generate(samples=samples, n_cols=5)
if __name__ == "__main__":
# Preparation (retrieve all available algorithms)
all_algos = ApplicationsRegistry.list_available()
algos = [
x["algorithm_application"].split("Based")[0].split("PaccMannRL")[-1]
+ "_"
+ x["algorithm_version"]
for x in list(filter(lambda x: "PaccMannRL" in x["algorithm_name"], all_algos))
]
# Load metadata
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards")
examples = pd.read_csv(metadata_root.joinpath("examples.csv"), header=None).fillna(
""
)
with open(metadata_root.joinpath("article.md"), "r") as f:
article = f.read()
with open(metadata_root.joinpath("description.md"), "r") as f:
description = f.read()
demo = gr.Interface(
fn=run_inference,
title="PaccMannRL",
inputs=[
gr.Dropdown(algos, label="Algorithm version", value="Protein_v0"),
gr.Radio(
choices=["Conditional", "Unbiased"],
label="Inference type",
value="Conditional",
),
gr.Textbox(
label="Protein target",
placeholder="MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTT",
lines=1,
),
gr.Textbox(
label="Gene expression target",
placeholder=f"{' '.join(map(str, np.round(np.random.rand(2128), 2)))}",
lines=1,
),
gr.Slider(minimum=0.5, maximum=2, value=1, label="Decoding temperature"),
gr.Slider(
minimum=5,
maximum=400,
value=100,
label="Maximal sequence length",
step=1,
),
gr.Slider(
minimum=1, maximum=50, value=10, label="Number of samples", step=1
),
],
outputs=gr.HTML(label="Output"),
article=article,
description=description,
examples=examples.values.tolist(),
)
demo.launch(debug=True, show_error=True)