Spaces:
Sleeping
Sleeping
File size: 4,569 Bytes
6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 3d19079 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 6f8fd55 ae3451c 3d19079 6f8fd55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy as sp
import sklearn as sk
import plotly.express as px
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import streamlit as st
from src.data_ingestion import remove_previous_view, merge_volumes
def clean_data(df):
df["date"] = pd.to_datetime(df["date"], format="%Y-%m-%d")
df["day"] = df["date"].dt.day_name()
df["hour"] = df["time"].str[:2] + ":00"
df.drop(columns=["motorcycle"], axis=1, inplace=True)
df["vehicle"] = df["car"] + df["large_vehicle"]
return df
class HeatMap:
def __init__(self, counts_df):
# counts_df = counts_df[counts_df['view'] == view]
self.df = clean_data(counts_df)
new = (
self.df.groupby(["hour", "day"])
.mean(numeric_only = True)
.drop(columns=["car", "large_vehicle"])
.reset_index()
)
table = pd.pivot_table(
new, values="vehicle", index=["day"], columns=["hour"]
).reset_index()
self.table = table.reindex([1, 5, 6, 4, 0, 2, 3]).round(1)
def vehicle_count_bar(self):
new_df = self.df.groupby(["day"]).mean(numeric_only = True).round(1).reset_index()
new_df = new_df.reindex([1, 5, 6, 4, 0, 2, 3])
veh_count_fig = px.bar(
new_df,
x="day",
y="vehicle",
color="day",
text_auto=True,
labels={"day": "Day of the Week", "vehicle": "Vehicle Count"},
)
veh_count_fig.update_layout(showlegend=False)
return veh_count_fig
def heatmap(self):
new_table = self.table.iloc[:, 1:].to_numpy()
hm_fig = px.imshow(
new_table,
labels=dict(
x="Hour of the Day", y="Day of the Week", color="Traffic"
),
x=[
"00", "01", "02", "03",
"04", "05", "06", "07",
"08", "09", "10", "11",
"12", "13", "14", "15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
],
y=[
"Mon",
"Tue",
"Wed",
"Thu",
"Fri",
"Sat",
"Sun",
],
# text_auto=True,
)
hm_fig.update_xaxes(side="top", tickmode = 'linear', type = 'category')
hm_fig.update_layout(yaxis_visible=True,
yaxis_showticklabels=True,
yaxis_title = ''
)
return hm_fig
def update_hour_bar_chart(self, hour="08:00"):
fig_hours = px.bar(
self.table,
x="day",
y=str(hour),
color="day",
# text_auto=True,
labels={"day": "Day of the Week"},
)
fig_hours.update_layout(showlegend=False)
fig_hours.update_layout(yaxis_visible=False,
yaxis_showticklabels=False,
yaxis_title = False
)
fig_hours.update_layout(xaxis_visible=True,
xaxis_showticklabels=True,
xaxis_title = ''
)
return fig_hours
def update_day_bar_chart(self, day="Saturday"):
t = self.table.T
t.drop("day", inplace=True)
t.columns = [
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday",
]
t = t.reset_index()
t['hour'] = t['hour'].str[:2]
fig_days = px.bar(
t,
x="hour",
y=str(day),
color=str(day),
# text_auto=True,
labels={"hour": "Count of Each Hour"},
)
fig_days.update_layout(showlegend=False)
fig_days.update_layout(yaxis_visible=False,
yaxis_showticklabels=False,
yaxis_title = False
)
fig_days.update_layout(xaxis_visible=True,
xaxis_showticklabels=True,
xaxis_title = '',
)
fig_days.update_xaxes(tickangle=0, tickmode = 'linear', type = 'category', categoryorder='category ascending')
return fig_days
|