tappyness1 commited on
Commit
2399098
·
1 Parent(s): d7aa6c5

predictive app

Browse files
Files changed (3) hide show
  1. app.py +20 -15
  2. notebooks/Causin_Final_Notebook.ipynb +0 -0
  3. src/pred_plot.py +101 -35
app.py CHANGED
@@ -8,7 +8,7 @@ from src.map_viz import calling_map_viz
8
  from src.data_ingestion import daily_average
9
  from src.heatmap import HeatMap
10
  from src.data_ingestion import remove_previous_view, merge_volumes
11
- from src.pred_plot import prep_data_pred_plot, data_split, train_model, predicted_figure, get_today, convert_date, gen_fig
12
  from datetime import date
13
 
14
  def fetch_data():
@@ -97,22 +97,27 @@ def main():
97
  final_table = prep_data_pred_plot(pred_df)
98
  x_train, _, y_train, _ = data_split(final_table)
99
  clf = train_model(x_train, y_train)
100
- pred_hour_choice = st.selectbox(
101
- "Choose Your Planned Hour",
102
- options= hours,
103
- key = "pred_hour", index = hours.index("08:00")
104
- )
105
- pred_view_choice = st.selectbox(
106
- "Choose View",
107
- options= ['Johor-Tuas','Johor-Woodlands', 'Tuas-Johor', 'Woodlands-Johor'],
108
- key = "pred_view"
109
- )
110
- d = st.date_input(
111
- "Choose Your Planned Date",
112
- date(today[0],today[1], today[2]))
 
 
 
 
113
 
114
  starter_variables = [x_train, str(d), pred_hour_choice, pred_view_choice]
115
  st.plotly_chart(predicted_figure(clf, starter_variables, figs))
116
-
 
117
  if __name__ == "__main__":
118
  main()
 
8
  from src.data_ingestion import daily_average
9
  from src.heatmap import HeatMap
10
  from src.data_ingestion import remove_previous_view, merge_volumes
11
+ from src.pred_plot import prep_data_pred_plot, data_split, train_model, predicted_figure, get_today, gen_fig, pred_bars
12
  from datetime import date
13
 
14
  def fetch_data():
 
97
  final_table = prep_data_pred_plot(pred_df)
98
  x_train, _, y_train, _ = data_split(final_table)
99
  clf = train_model(x_train, y_train)
100
+ col1, col2, col3 = st.columns(3)
101
+ with col1:
102
+ pred_hour_choice = st.selectbox(
103
+ "Choose Your Planned Hour",
104
+ options= hours,
105
+ key = "pred_hour", index = hours.index("08:00")
106
+ )
107
+ with col2:
108
+ pred_view_choice = st.selectbox(
109
+ "Choose View",
110
+ options= ['Johor-Tuas','Johor-Woodlands', 'Tuas-Johor', 'Woodlands-Johor'],
111
+ key = "pred_view"
112
+ )
113
+ with col3:
114
+ d = st.date_input(
115
+ "Choose Your Planned Date",
116
+ date(today[0],today[1], today[2]))
117
 
118
  starter_variables = [x_train, str(d), pred_hour_choice, pred_view_choice]
119
  st.plotly_chart(predicted_figure(clf, starter_variables, figs))
120
+ st.plotly_chart(pred_bars(d, final_table))
121
+
122
  if __name__ == "__main__":
123
  main()
notebooks/Causin_Final_Notebook.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
src/pred_plot.py CHANGED
@@ -3,6 +3,8 @@ from sklearn.model_selection import train_test_split
3
  from sklearn.neural_network import MLPClassifier
4
  import pandas as pd
5
  import plotly.graph_objects as go
 
 
6
 
7
  def hour_rounder(t):
8
  if int(t.minute)>= 30:
@@ -32,13 +34,13 @@ def weekend(w):
32
  return 0
33
 
34
  def vehicle_cat(v):
35
- if v >= 0 and v < 20:
36
  return 0
37
- elif v >= 20 and v < 50:
38
  return 1
39
- elif v >= 50 and v < 80:
40
  return 2
41
- elif v >= 80 and v < 120:
42
  return 3
43
  else:
44
  return 4
@@ -117,8 +119,8 @@ def prep_data_pred_plot(df):
117
  final_df.loc[:, 'time'] = pd.to_datetime(final_df.loc[:,'time'], format='%H:%M:%S')
118
  final_df.loc[:,'hour'] = final_df.loc[:,'time'].apply(hour_rounder)
119
 
120
- final_table = final_df.groupby(['view', 'day', 'hour']).sum().reset_index().loc[:,['day', 'hour','view', 'vehicle']]
121
-
122
  final_table.loc[:,'peak'] = final_table.loc[:,'hour'].apply(peak_hours)
123
  final_table.loc[:,'peak'] = final_table.loc[:,'peak'].astype('category')
124
  final_table.loc[:,'weekend'] = final_table.loc[:,'day'].apply(weekend)
@@ -129,37 +131,63 @@ def prep_data_pred_plot(df):
129
  return final_table
130
 
131
  def gen_fig():
 
 
 
 
 
 
 
132
  figs = []
 
 
133
 
134
  for i in range(5):
135
- midway = [15, 40, 70, 110, 150]
136
- cat = ['No Traffic', 'Minimal Traffic', 'Mild Traffic', 'Moderate Traffic', 'Peak Traffic']
137
-
138
- figure = go.Figure(go.Indicator(
139
- mode = "gauge",
140
- value = midway[i],
141
- domain = {'x': [0, 1], 'y': [0, 1]},
142
- title = {'text': cat[i], 'font': {'size': 24}},
143
- gauge = {
144
- 'axis': {'range': [None, 156], 'tickwidth': 1, 'tickcolor': "darkblue"},
145
- 'bar': {'color': "blue"},
146
- 'bgcolor': "white",
147
- 'borderwidth': 2,
148
- 'bordercolor': "gray",
149
- 'steps': [
150
- {'range': [0, 19], 'color': 'darkgreen'},
151
- {'range': [20, 49], 'color': 'green'},
152
- {'range': [50, 79], 'color': 'yellow'},
153
- {'range': [80, 119], 'color': 'orange'},
154
- {'range': [120, 160], 'color': 'red'}],
155
- 'threshold': {
156
- 'line': {'color': "red", 'width': 4},
157
- 'thickness': 0.75,
158
- 'value': 490}}))
159
-
160
- figure.update_layout(paper_bgcolor = "lavender", font = {'color': "darkblue", 'family': "Arial"})
161
-
162
- figs.append(figure)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
  return figs
165
 
@@ -200,4 +228,42 @@ def train_model(x_train, y_train):
200
  clf = MLPClassifier(solver='lbfgs', alpha=3, hidden_layer_sizes=(5,4), random_state=2, max_iter=3000)
201
  clf.fit(x_train, y_train)
202
 
203
- return clf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from sklearn.neural_network import MLPClassifier
4
  import pandas as pd
5
  import plotly.graph_objects as go
6
+ import streamlit as st
7
+ from plotly.subplots import make_subplots
8
 
9
  def hour_rounder(t):
10
  if int(t.minute)>= 30:
 
34
  return 0
35
 
36
  def vehicle_cat(v):
37
+ if v >= 0 and v < 2:
38
  return 0
39
+ elif v >= 2 and v < 4:
40
  return 1
41
+ elif v >= 4 and v < 6:
42
  return 2
43
+ elif v >= 6 and v < 8:
44
  return 3
45
  else:
46
  return 4
 
119
  final_df.loc[:, 'time'] = pd.to_datetime(final_df.loc[:,'time'], format='%H:%M:%S')
120
  final_df.loc[:,'hour'] = final_df.loc[:,'time'].apply(hour_rounder)
121
 
122
+ final_table = final_df.groupby(['view', 'day', 'hour']).mean().reset_index().loc[:,['day', 'hour','view', 'vehicle']]
123
+ final_table['vehicle'] = final_table['vehicle'].apply(lambda x: round(x))
124
  final_table.loc[:,'peak'] = final_table.loc[:,'hour'].apply(peak_hours)
125
  final_table.loc[:,'peak'] = final_table.loc[:,'peak'].astype('category')
126
  final_table.loc[:,'weekend'] = final_table.loc[:,'day'].apply(weekend)
 
131
  return final_table
132
 
133
  def gen_fig():
134
+
135
+ paths = ["M 0.2 0.35 L 0.48 0.52 L 0.52 0.50",
136
+ "M 0.25 0.75 L 0.475 0.52 L 0.52 0.52",
137
+ "M 0.5 0.9 L 0.485 0.52 L 0.515 0.52",
138
+ "M 0.75 0.75 L 0.485 0.52 L 0.52 0.51",
139
+ "M 0.8 0.35 L 0.48 0.50 L 0.52 0.52"]
140
+
141
  figs = []
142
+ values_ = ["No Traffic on Johor-Singapore Causeway", "Low Traffic on Johor-Singapore Causeway", "Johor-Singapore Causeway Slightly Busy",
143
+ "Johor-Singapore Causeway Moderately Busy", "Busiest Time to Travel on Johor-Singapore Causeway"]
144
 
145
  for i in range(5):
146
+ plot_bgcolor = "#def"
147
+ colors = ["#f25829", "#f2a529", "#eff229", "#85e043", "#2bad4e","rgba(0,0,0,0)"]
148
+ quadrant_text = ["<b>Heavy</b>", "<b>Moderate</b>", "<b>Mild</b>", "<b>Low</b>", "<b>None</b>",""]
149
+ n_quadrants = len(colors) - 1
150
+ figure_1 = go.Figure(
151
+ data=[
152
+ go.Pie(
153
+ values=[14,14,14,14,14,30],
154
+ rotation=130,
155
+ hole=0.75,
156
+ marker_colors=colors,
157
+ marker_line={"width":2, "color":"white"},
158
+ textinfo="none",
159
+ text=quadrant_text,
160
+ hoverinfo="text"
161
+ ),
162
+ ],
163
+ layout=go.Layout(
164
+ showlegend=False,
165
+ margin=dict(b=0,t=30,l=10,r=10),
166
+ width=500,
167
+ height=350,
168
+ paper_bgcolor="rgba(0,0,0,0)",
169
+ annotations=[
170
+ go.layout.Annotation(
171
+ text=f"<b>{values_[i]}</b>",
172
+ x=0.5, xanchor="center", xref="paper",
173
+ y= 0.1, yanchor="bottom", yref="paper",
174
+ showarrow=False,
175
+ font= {"size":15, "color":"#333"}
176
+ )
177
+ ]
178
+ )
179
+ )
180
+ figure_1.update_layout(shapes=[dict(type='path',
181
+ path=paths[i],
182
+ fillcolor="#333"),
183
+ go.layout.Shape(
184
+ type="circle",
185
+ x0=0.48, x1=0.52,
186
+ y0=0.48, y1=0.54,
187
+ fillcolor="#333",
188
+ line_color="#333",
189
+ )])
190
+ figs.append(figure_1)
191
 
192
  return figs
193
 
 
228
  clf = MLPClassifier(solver='lbfgs', alpha=3, hidden_layer_sizes=(5,4), random_state=2, max_iter=3000)
229
  clf.fit(x_train, y_train)
230
 
231
+ return clf
232
+
233
+ def pred_bars(my_date_picker_single, final_table):
234
+ day_today = convert_date(str(my_date_picker_single))
235
+ df_filter = final_table[final_table['day']==day_today]
236
+
237
+ color_map = {0:"#2bad4e", 1:"#85e043", 2:"#eff229", 3:"#f2a529", 4:"#f25829"}
238
+
239
+
240
+ bar_day = make_subplots(shared_yaxes="all", rows=2, cols=2, start_cell="bottom-left", subplot_titles=("Johor-Tuas",
241
+ "Tuas-Johor",
242
+ "Johor-Woodlands",
243
+ "Johor-Woodlands"))
244
+ f1 = df_filter[df_filter['view']=='Johor-Tuas']
245
+ c1 = pd.Series(f1['cat']).map(color_map)
246
+ bar_day.add_trace(go.Bar(x=f1['hour'], y=f1['vehicle'], name='Johor-Tuas', showlegend=False, marker={'color':c1}),
247
+ row=1, col=1)
248
+
249
+ f2 = df_filter[df_filter['view']=='Tuas-Johor']
250
+ c2 = pd.Series(f2['cat']).map(color_map)
251
+ bar_day.add_trace(go.Bar(x=f2['hour'], y=f2['vehicle'], name='Tuas-Johor', showlegend=False, marker={'color':c2}),
252
+ row=1, col=2)
253
+ f3 = df_filter[df_filter['view']=='Johor-Woodlands']
254
+ c3 = pd.Series(f3['cat']).map(color_map)
255
+ bar_day.add_trace(go.Bar(x=f3['hour'], y=f3['vehicle'], name='Johor-Woodlands', showlegend=False, marker={'color':c3}),
256
+ row=2, col=1)
257
+ f4 = df_filter[df_filter['view']=='Woodlands-Johor']
258
+ c4 = pd.Series(f4['cat']).map(color_map)
259
+ bar_day.add_trace(go.Bar(x=f4['hour'], y=f4['vehicle'], name='Johor-Woodlands', showlegend=False, marker={'color':c4}),
260
+ row=2, col=2)
261
+
262
+ val_d = date.today().strftime("%d %B, %Y")
263
+ day_d = date.today().strftime("%A")
264
+ tex = "Predicted 24 Hour Traffic Trend on: " + day_d + ", " + str(val_d)
265
+
266
+
267
+ bar_day.update_layout(title_text=tex, paper_bgcolor="rgba(0,0,0,0)", plot_bgcolor="rgba(0,0,0,0)")
268
+ bar_day.update_xaxes(tickangle=45)
269
+ return bar_day